Waveform Analysis of a 240 pixel TES for X-rays and charged particles using a function of triggering neighboring pixels

R. Hayakawa¹, S. Yamada¹, H. Tatsuno¹, J. W. Fowler³, D. S. Swetz³, D. A. Bennett³, M. Durkin³, G.C. O'Neil³, J. N. Ullom³, W. B. Doriese³, C. D. Reintsem³, J. D. Gard³, S. Okada², T. Hashimoto⁴, Y. Ichinohe⁶, H. Noda⁵, T. Hayashi⁷, and the HEATES collaboration

1. TMU, 2. RIKEN, 3. NIST, 4. JAEA, 5. Osaka Univ., 6. Rikkyo Univ., 7. ISAS/JAXA

2. Group Trigger Function

TES bilayer materials	Mo/Cu	
Size	300um x 320um	
Num. of pixels	240	
Effective area	23mm ²	
Absorber	Bi (4um)	
Transition Temp.	100mK	

pulse signal

Gold coated Si collimator

> Photo credit : D.R. Schmidt, NIST

VIST

20um	two-stage pulse tube
1 ²	(60K, 3K)
n)	
K	(model : HPD 102 DENALI) (double-stage salt pills : GGG 1K, FAA 50mK) ADR hold time > 1 day

Read out system
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
 Time Division Multiplex : TDM Switching time: 240ns Taking time to reload the same channel: 7.2us W.B. Doriese et al. JLTD, 184, 1, 389, 2016
 Developing for backup method in ATHENA mission planned to use Frequency Division Multiplexing

3. Waveform Analysis with Group Trigger

• After reduction of the electrically neighboring pixels, the energy correlated component has disappeared \rightarrow We could distinguish the events which are really piled up by the charged particle effect.

4. Data Acquisition with grouping entire pixels

Thermal crosstalk can be seen at many pixels in the TES array
piled-up secondary pulses were almost simultaneously with primary pulse
some spikes in the waveforms: electrical noise

Waveforms of whole active pixels

Event cutting condition:

1. save 95% of the total events

2. parameter (sec_pr_mean) is optimized for maximum S / N ratio

Refer to S. Yamada et al. (Poster, 117-61)

• FWHM energy resolution is improved for ~ 0.7 eV by using group trigger cut (sec_pr_mean < 24)</p>

Still room to improve energy resolution and S/N ratio

Refer to H. Tatsuno et al. (Poster, 104-203)

Improvement of energy resolution

N-ray signal: maximum of the peak region is random → heat penetration is not occurred
 Charged particle signal: right side is higher than left → heat penetrated from right
 Succeeded in identifying the input particles using spacial energy distribution

Distribution of max. of peak region

