On-sky Responsivity Calibration of
the Integrated Superconducting
Spectrometer
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[Abstract] We are developing an ultra-wideband spectroscopic instrument, DESHIMA (Deep Spectroscopic Hilgh-redshift Mapper), based on the technologies of an on-chip filter-bank
and Microwave Kinetic Inductance Detector (MKID) to investigate dusty star-burst galaxies in the distant universe at millimeter and submillimeter wavelength. On-site experiment of
prototype DESHIMA was performed using the ASTE 10-m telescope. We established a reliable responsivity model that converts frequency responses of the MKIDs to line-of-sight
brightness temperature. Using a skydip data set under various precipitable water vapors (PWV, 0.4-3.0 mm), obtained by the ALMA radiometers, we estimated the responsivity model
parameters. The line-of-sight brightness temperature of sky is estimated using an atmospheric transmission model and obtained two parameters of the responsivity model for each
MKID. As a result, we obtain temperature calibration uncertainty of 16=4%, which is enough smaller than other photometric biases. In addition, the mode of forward efficiency of 0.88 in
our responsivity model is consistent with an expected value from the geometrical support structure of the telescope. We also estimate line-of-sight PWVs of each skydip observation
using frequency response of MKIDs and confirm the consistency with PWVs obtained by ALMA.

Introduction: DESHIMA on ASTE 2017 Method

We define the relative shift in readout resonance frequency f(T): 6x(T) = (f(T) —
f(Tioaa)) f(Tipqq), Which is a direct readout value of an MKID. Here T is brightness
temperature at the cryostat windows. We use an optical chopper as a standard of the

resonance frequency at Tj,,4 = 274 K. The relation between éx and T for NbTiN/Al hybrid
MKID is 8x(T) = po(/T + Tew — v/ Tioaa + Tew), where py is a factor of proportionality and

In Oct.-Nov. 2017 we had a first on-sky demonstration of DESHIMA, a new
spectroscopic instrument using MKIDs combined with on-chip superconducting
filterbank (Fig 1a) covering 332—-377 GHz with 49 spectral channels (Av/v ~
380) using the ASTE 10-m telescope. In this session, we successfully detected
some astronomical targets, for instance, redshifted CO(J=3-2) line of VV114, a

luminous infrared galaxy at the redshift of 0.020 (Fig 1b). Tcw is the Callen-Welton correction temperature (-8.4K@350GHz). Considering sky
We present a reliable calibration technique to established the responsivity brightness temperature, T = 7Ngypalsky + (1 - nfwd)Tamb , where Tgp is ambient
model that converts raw readout data to line-of-sight brightness temperature ~ temperature and n,,4 is forward efficiency. Thus, we can write a responsivity equation:
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telescopes as a median value, Nikolic et al. 2013).
An example of the responsivity. model fit (ch. 20 at 335.5 GHz) is shown in Fig. 3

As a result of the DESHIMA first light session on the ASTE telescope, we succeeded to
(left). Using the obtained parameters, we estimated line-of-sight PWVs (DESHIMA

. Ay _ i establish a reliable responsivity model using the skydip data. Our responsivity model
EWV) ?”d re-calculateo! th? error ratio, as shown in Fig 3 (”ght)_- The statistics for all reproduced expected forward efficiency of the ASTE telescope, and archived photometric
filter pixels are shown in Fig 4 and Table 1. The 1o error of 4% is smaller than other error of 10=4%, which is better than other photometric errors. We are planning next

photometric errors by chopper wheel method and planet flux model (typically 5- DESHIMA session in 2020 using new filterbank chip operated at 220—440 GHz with

20%) Thus, we obtained flux calibration errors of 16=4% from the responsivity Av/v ~ 500. Our responsivity calibration method will be tested for further improvement.
model curves and estimated PWVs from DESHIMA itself.




