High-resolution Exotic Atom (x-ray spectroscopy) with Transition-Ecdge Sensors
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1. ABSTRACT
A novel triggering function developed for 240 pixel NIST Transition-Edge Sensors[1] is denonstrated under the high rafe of particle background. The function is integrated into
the standard dafa acquisition system in the NIST TES framework. It enables any type of combination of trigger pattern when a pixelis triggered, which is called “group
trigger”. As a practical implementation, the primary trigger is distributed to the four physicadlly nearest pixels. The group trigger function was utilized throughout the entire
one-month J-PARC experiment(3] for the measurement of the Kaonic-atom X-rays. This trigger allowed us to confirm that the increased background and degraded energy
resolution we observed when operating the TES array in the presence of an ion beam are the result of thermal crosstalk from charged particles[4]. We show that the
maximum of the peak values among the four neighboring pixels is useful event selection parametfer. We use cuts based on this parameter to improve the peak-to-background
level in a measured x-ray energy spectrum by a factor of 2.5, while keeping 95% of measured events. This flexible group triggering technique allows us to improve thesignal
to noise on the very faint Kaonic Helium x-ray lines we are measuring, better understand our experiment environment, and we believe this technique may prove useful in other

ground and space based TES applications.

2. INTRODUCTION
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High-energy charged particles deposit energy in Si frame of TES chip[5].
Need to know thermal-crosstalk pulses that degrade the energy resolution.

3. IMPLEMENTATION

The 240-pixel NIST TES arrayis read out with the time-domain multiplexing
(TDM) system([1]. Each TES consists of a superconducting bilayer of thin Mo and
Cu films with an additional 4um thick Bi absorber. The detector stageis cooled
with a pulse-tube-backed adiabatic demagnetization refrigerator (ADR). The
ADR's bath temperature is regulated to 75 mK with 5uKrms. The TES pixels are
then electrically biased to their superconducting critical temperature of T, of
100 mK. The time-division-multiplexing readout system samples the current
signal of the 240 sensors through 8 SQUID columns[2]. The sanpling time of
each pixel is 7.2ps (=240nsx 30 pixels), and thus the effective sanplingrateis
139 kHz. All the sampleis transferred to the host PC through PCIe bus. The
software package called “Matter" is the main engine of the pulse processing
running on the host PC, where the most part of the implementationis the
internal functions of it. The main routineis summarised as the followingstep.

1) load the waveform until the minimum of timestamps in the latest all-pixel events
2) scan the waveform for primary triggers accarding to the trigger setting

3) distribute the primary triggers to the receivers referring to the look-up table

4) save all the records for the trigger queues with a flag of primary and secondary
5) trim the waveform by the maximum of timestamps in all the processed triggers
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4. RESULT

(1) The spectra taken at J-PARC E62 experiment o the energy-scde calibmti

Pure Cr, Co, and Cu
used as X-ray generator
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RUNID _ Xray Beam Duration (se0) _ratc/array (Hz) Remark
JES ON  OFF ~210 gain cal. for beam only
136-139  OFF  ON 21k ~20 beam only
‘HefHe*  ON OFF ~0.8M ~ 190 X-ray only
*He'He"  ON ON ~0.5M ~210 X-ray & beam

Xraybeam = Cr, Co, Cu X-rays
+ charged particles

Xray = Cr, Co Cu X-rays

beam = charged particles.
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Fig.1) The entire spectra obtained during (1) X-ray and beam on, (2) X-ray only, and (3) beam only, shown in
black, green, and blue, respectively. The bin size is 2 eV for (1) and (2), while 10 eV for (3).

(2) The primary and secondary events

primary secondary

(@) X-ray only (¢) X-ray and beam at Cu Kalpha
100
560 70
£ 107
140 w0
&20 [ 4 1| [0
|

o 100 g

5000 6000 7000 8000 9000 g0l

0. () Xoray and beam P

60 Fan]
g 10?
Fiao
5
§ 10!
820 | ‘ { ‘

o : 100 o = M .

5000 6000 7000 8000 9000 6900 6920 6940 6960

energy (V) energy (eV)

sec_pr_mean = the maximum pulse height over tre
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It is a good indicator of the themral cross talk

Fig.2) Energy vs. sec_pr_mean of pixel 129. (a) %
Lo ray only, (b) X-ray and beam, and (c)is a magnified
1 one of (b) to clarify it around Cu Ka lines. The bin
size of the energy is 2 eV, while that of
sec_pr_mean is 1.
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(3) Optimize the event selectrion parameter T save 95% events from X-ray and beam data

6900.00 < E < 6975.00

over 6.9 keV to 6.975 keV, the criteria requires

5.0

1.0

sec_pr_mean to be 39, and the signal fo noise,

°
&

— xraybeam
-~ beamonly

cumulative distribution

4.5

----- a ratio of the cumulative curve of the X-ray

40 plus beam to beam only, becomes 2.5.

o

Fig.3) The cumulative dis tributions of
sec_pr_mean for X-ray plus beam (solid) and
beam only (dot) are plotted in the left axis.
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(3) The effect of the group-trigger event cut
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5. SUMMARY
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We presented the implementation of the group frigger for the first time, and its successful use at the
one-month experiment at J-PARC. The cut selection is optimized to obtain 95% signal acceptance and
achieved the improvement of the signal to noise ratio by a factor of 2.5. We have only used a saalar value
for the analysis, but utilizing a waveform in the neighbor could potfentially restore the energy resolutin &
well. It could also let us notice a possible change in the environment (e.g, noise crosstalk, or any change
of detector response), which could be useful for the future space mission such as Athena, Lynx, and Super
DIOS. Further applicafion of theTES into the severe environment would help it more mature.
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