

Institute for Basic Science

Analysis tool of AMoRE Pilot

K. R. $Woo^{1,2}$ with AMoRE collaboration

[1] Center for Underground Physics, Institute for Basic Science, Korea [2] University of Science & Technology, Korea

Neutrinoless Double Beta-Decay $(0\nu\beta\beta)$

Discovery of neutrino oscillation

- Neutrinos have non-zero mass
- Show very small values of neutrino mass-squared differences
- Does not determine the nature of neutrinos

Dirac : Fermions are known to exist in two forms particle and antiparticle **Majorana** : Neutrinos may be an exception, particle and antiparticle being identical.

The most sensitive approach

 $0\nu\beta\beta$ experiment

Low Temperature Detector

Photon collector

Changes from Run 5 to Run 6

- Stabilization heater
- Pin connector 2.
- Stycast \rightarrow Lead-tin solder 3.
- 4. Stainless steel screw \rightarrow Cu screw

Neutron Shielding - Boric acid (H_3BO_3) - Borated PE (Boron 28%)

Detection sensitivity on the AMoRE Pilot – Run 5

- Metallic Magnetic Calorimeter(MMC) using paramagnetic materials(Au:Er). 1.
- When energy is released in the crystal, its temperature increases.
- And it changes the MMC's magnetization. 3.
- 4. Induces current change in Superconducting Quantum Interference Device(SQUID) loops.

Data processing

3000 2900 Energy (keV 👝)

a : The abundance of the isotope of interest ϵ : The detector efficiency η : The number of the nuclide of interest in one absorber molecule A_{det} : The total molar mass of the detector material $M_{\rm det} \cdot t$: Exposure *b* : The level of background ΔE : The energy resolution

The solid green line is the fitted response function describing the flat background and the excluded $0\nu\beta\beta$ peak corresponding to the 90% confidence level (C.L.) limit of $T_{1/2}^{0\nu} > 9.5 \times 10^{22}$ y.

Official (52.1 kg \cdot d of ¹⁰⁰ Mo)	Additional (67. 1 kg \cdot d of ¹⁰⁰ Mo)
$T_{1/2}^{0\nu} > 1.1 \times 10^{23} \text{ y}$	$T_{1/2}^{0\nu} > 1.2 \times 10^{23} \text{ y}$

Background level RUN6 SE01 Energy spectrum -RUN6 -Run6 with neutron **Background Level (ROI)** Run6 Run6 Run5 $[Counts/(keV \cdot kg \cdot y)]$ with neutron shield ¥ 10² 1.5 ± 0.39 0.60 ± 0.25 SE01 0.61 ± 0.35 \tilde{O}_{10^1} The neutron shield is more effective in a wide energy region. 1500 2000 2500 3000 3500 500 1000 Energy [keV]

Summary & Future plans for the AMoRE

AMoRE-I

Time [ms]	
Energy [keV]	Source
75	Pb kα
239	²¹² Pb (Thorium Series)
352	²¹⁴ Pb (Uranium Series)
511	²⁰⁸ Tl (Thorium Series)
583	²⁰⁸ Tl (Thorium Series)
609	²¹⁴ Bi (Thorium Series)
1173	⁶⁰ Co
1332	⁶⁰ Co
1461	⁴⁰ K (EC)
2615	²⁰⁸ Tl (Thorium Series)

600

- AMoRE-II - Total 200 kg
- We are continuing our MMC and light detector research to improve the resolution. \bullet
- Improved low background by using low-radioactivity materials and shielding against external radioactivity.
- The AMoRE-I, the next phase of the project, which has a larger mass of crystals, is being prepared.