

Atomic Layer Deposition Niobium Nitride Films for High-Q Resonators

Calder Sheagren¹, Alexander Anferov², Peter Barry³, David Schuster², Erik Shirokoff¹, and Qing Yang Tang¹ ¹Kavli Institute for Cosmological Physics, The University of Chicago, Chicago IL ²Department of Physics, The University of Chicago, Chicago IL ³Argonne National Laboratory, Lemont IL

Atomic Layer Deposition

One Plasma-Enhanced Atomic Layer Deposition cycle consists of treating the substrate with the precursor, TBTDEN, removing the precursor from the chamber, lighting the plasma with P = 300W, waiting, turning off the Argon plasma, and removing the excess Ar from the chamber. Furthermore, since Nb has a low vapor pressure, we use three Ar boost cycles to improve chamber precursor concentration. One ALD cycle creates approximately one atomic monolayer of metal, and we repeat this process for a given cycle count to achieve the desired thickness.

Crystallographic Structure

Fabrication

Process Step	Machine	Notes
Deposition	Ultratech Fiji Plasma Enhanced Atomic Layer Deposition	Tempera 100 cycl
Lithography	Heidelberg MLA150 Maskless Aligner	Defoc: 0 Dose:12 375nm l
Etch	PlasmaTherm Inductively Coupled Plasma Chlorine Etcher	Etch tim CF ₄ Flow CHF ₃ Flo Ar Flow:

RF Characterization

To measure the microwave properties of the ALD NbN films, we construct single-layer microwave resonators and test them to obtain the RF critical temperature $T_c^{(RF)}$ and quality factor Q. This is done with a simple fabrication process described on the bottom left.

To find $T_{c}^{(RF)}$, we measure the frequency shift as a function of stage temperature, and fit to Mattis-Bardeen curves and extrapolate Tc. A sample resonator fit is shown above.

We find all Q values above 10^4 , with most above 10^{-5} and many above 10^6. The quality factor performance is maintained as the deposition temperature changes.

ature: 250-300 C les≈6 nm

 25 mJ/cm^2 laser ne: 5-10 min v: 40 sccm ow: 10 sccm 10 sccm

This work made use of the Pritzker Nanofabrication Facility of the Institute for Molecular Engineering at the University of Chicago, which receives support from SHyNE, a node of the National Science Foundations National Nanotechnology Coordinated Infrastructure (NSF NNCI-1542205).

- 1. B. A. Mazin, P. K. Day, H. G. LeDuc, A. Vayonakis, and J. Zmuidzinas, in
- 2. P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis, and J. Zmuidzinas, *Nature* 425, 817 (2003).
- 3. L. E. Archer, Ph.D. thesis, Massachusetts Institute of Technology (2017).
- 4. M. J. Sowa et al., *Journal of Vacuum Science & Technology A* 35, 01B143 (2017).
- Superconductivity 27, 1 (2017).
- 5. F. W. Carter, T. S. Khaire, V. Novosad, and C. L. Chang, *IEEE Transactions on Applied*

- 6. J. Gao et al., Journal of Low Temperature Physics 151, 557 (2008). 7. J. Gao, Ph.D. thesis, California Institute of Technology (2008). 8. P. Barry, Ph.D. thesis, Cardiff University (2014).

DC T_c and Thickness

Acknowledgements

References

Superconducting kinetic inductance photon detectors, vol. 4849 (2002).