

mazinlab.org

Anti-reflection Coatings to Improve the Optical Quantum Efficiency of MKID Arrays

G. Coiffard¹, S. Steiger¹, N. Zobrist¹, B. A. Mazin¹, M. Daal¹, B. Bumble² ¹ University of California, Santa Barbara ² NASA JPL

MOTIVATION

The kinetic inductance effect causes incident photons to change the surface impedance of a superconductor

Response of a Patterned Superconducting MKID Resonator

RESULTS

Analysis Methods:

- \rightarrow Determine optical constants (n & k) of the metal with ellipsometry
- \rightarrow Simulate films using TFCalc software
- \rightarrow Optimize SiO₂ and Ta₂O₅ thicknesses to maximize absorption in the 400-

(2) is focused on the sputter target (3), Sputtering of the Si or Ta particles is done using a Xe ionbeam. The "assist" ion beam source (4) oxidizes the film.

The Quantum Efficiency (QE) measurement is lower than our expectations \rightarrow indicates extra loss in the system, possibly due to bad microlens alignment

MKID Arrays using Hafnium (Hf) Thin Films

Optimized film thickness was found to be 110 nm of SiO₂ and 56 nm of Ta₂O₅ on a Hf film + sapphire

CONCLUSIONS

 \rightarrow A bi-layer of SiO₂/Ta₂O₅ (98 nm and 49 nm, respectively) deposited on top of the photosensitive PtSi inductor of the MKID increases the QE by roughly 30% in the instrument bandwidth

- \rightarrow The same performance should be achievable with Hf based MKIDs
- \rightarrow High QE, 20, 000 pixel arrays to be fabricated soon

18th International Workshop on Low Temperature Detectors

