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Abstract
We present simulation software utilizing graphical processing units (GPUs) for the physics of detectors based on arrays of transition-edge sensors (TES). With the support of
GPUs it is possible to perform simulations of large pixel arrays, making the software a powerful tool in detector development. Comparisons with TES small-signal and noise theory
confirm the representativity of the simulated data. In order to demonstrate the capabilities of this approach we present its implementation in xifusim, a simulator for the X-ray
Integral Field Unit (X-IFU), a cryogenic X-ray spectrometer on board the future Athena X-ray observatory.

Introduction

• The X-IFU instrument on board Athena will operate a large array of more than
3000 TES pixels [1, 2]

• To study and optimize the instrument performance during design we are developing
xifusim, a simulator of the X-IFU detection pipeline (C++, Linux/macOS)

• Here we describe our implementation of the first module in the simulation chain, a
generic software for the simulation of TES pixel arrays under incident radiation
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Figure 1: Data flow in xifusim. A list of photon impacts is propagated to the TES array where the
pixel responses are calculated. Their signal is amplified in a set of SQUIDs, either using a simple, fast
SQUID model or a model implementing the nonlinear SQUID response and baseband feedback. An
Analog-Digital-Converter maps the measured current into a digital signal which is passed to a trigger
that detects the individual pulses in the datastream and writes them to the output file.

Model Description

• We implement a generic mathematical
model of the TES electro thermal sys-
tem

• Evolution of temperature T (t) and cur-
rent I(t) in a single TES pixel de-
scribed by [3, 4]

C
dT

dt
= −Pb + R(T, I)I2 + Pin (1)

L
dI

dt
= V − IRL − IRTES(T, I), (2)

• Modular code design: Individual parts
of the model can be exchanged or re-
fined as needed

• Here: Assuming linear resistance
model for RTES(T, I) surface and
power-law dependence for Pb
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Figure 2: The TES model we implement in our
software, consisting of the Thevenin-equivalent
representation of the bias circuit coupled to the
TES.
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TES Array Simulation

• Input: Pixel parameters and list of photon impacts on the array
• Output: Current I(t) in each pixel during simulation interval
• Code numerically solves Eqs. (1) and (2)
• Photon absorption modeled as delta-function impulse
• Simulation includes various noise sources, modeled as Gaussian noise
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Figure 3: Individual signals of a four pixel configuration during a 30 seconds simulation with random
impacts, using the current best estimate X-IFU pixel parameters. Currents are flipped and normalized.

GPU Implementation

• Run time on single-core processor suf-
ficient for small array simulations and
short time intervals

• To enable long simulations for large
arrays with thousands of pixels like the
X-IFU we also implement a GPU ac-
celerated version of the code using the
Nvidia CUDA platform [5]
⇒ Speedup by factor 3000 for full

array - now five times faster than
real-time
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Figure 4: Run time comparison between single-
core and GPU accelerated version on an Nvidia
GeForce GTX 1080 Ti for different array sizes
simulated for one second each.

Verification of the Simulation Output

• Started investigating different means
to verify our simulation output

• Power spectral density of current
noise in simulation matches theoreti-
cal levels derived with linear equilib-
rium ansatz [3]

• We also find good agreement with
small-signal approximation [3] of
Eqs. (1) and (2) for low photon en-
ergies

• Comparisons with measured data will
be performed next
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Figure 5: Comparison between predicted and sim-
ulated noise levels. Included noise sources are
Johnson noise of the TES and load resistor, ther-
mal fluctuation noise and noise from the bias line.

Simulation
Small-Signal Approximation
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Figure 6: Pulse shape comparison between simulation and TES small-signall model [3] for different
photon energies. The pulses match very well for small energies. For higher energies they start to
deviate as expected due to the non-linearities in the system.For more information: maximilian.ml.lorenz@fau.de


