

Optimized design for on-chip Fabry-Pérot resonators

K. Kouwenhoven¹, S. Hähnle^{1,2}, D. Thoen¹, V. Murugesan², and J. J. A. Baselmans^{1,2}

Terahertz Sensing group, Delft University of Technology, Delft, The Netherlands ² Netherlands Institute for Space Research, SRON, Utrecht, The Netherlands K.Kouwenhoven@tudelft.nl - terahertz.tudelft.nl

- Motivation

- > On-chip spectrometers, such as DESHIMA, require transmission lines with $tan\delta < 10^{-4} \rightarrow Q_i > 10^4$.
- > Dielectric losses unknown under DESHIMA operating conditions.
- Design a lab-on-a-chip concept based on Fabry-Pérot resonators to measure the dielectric losses for:
 - Sub-K temperatures.
 - 300 GHz 1.1 THz.

DESHIMA: Talk [160] Fr. 16:30 by A. Endo Poster [236-259] by A. Pascual Laguna

Measurement set-up:

 S_{21}

Poster [181-147] by S. Hähnle

CPW to microstrip couplers

- Couples microstrip resonator to CPW feed- and readout lines.
- $\succ l_{overlap}$ sets $|S_{21,coupler}|$ and $\min|S_{21}| \rightarrow \text{full curve}$ approach.
- Couples directly to the

 Q_i from 100 to 10⁵.

-Measuring the losses Q_i

 Q_l : loaded quality factor \rightarrow shape of the peak Q_c : coupling Q-factor Q_i : intrinsic loss Q-factor = $(tan\delta)^{-1}$

 $\frac{1}{Q_l} = \frac{1}{Q_c} + \frac{1}{Q_i}$

 \triangleright Problem: realised Q_c unknown due to fabrication uncertainties.

 $\succ Q_i$ limited approach:

- Design resonator such that $Q_c \gg Q_i \rightarrow Q_l \approx Q_i$.
- Limited frequency resolution of the source prohibits adequate sampling of the high Q_l FP peak \rightarrow Not usable for high Q_i dielectrics.

Full $|S_{21}|$ curve approach:

- Relative peak height gives Q_c .
- Not limited by frequency resolution of the source!
- Limited by stray coupling \rightarrow part of the curve is los

-Optimized FP Design

Four independent resonators on a chip:

Fig: Stray coupling

shorted MKID line.

Section A-A'

— FP model

Response FP KID

-Modelled vs. Measured Response

-Measured Q_i

- \blacktriangleright Able to measure losses of a microstrip at 300 - 400 GHz!
 - $Q_i \sim 2000 3000$
 - $tan\delta \sim 0.33 \times 10^{-3} 0.5 \times 10^{-3}$

> PECVD deposited a-Si.

- Each with different Q_c .
- Probe the Q_l vs. Q_c curve.
- Redundancy.
- \blacktriangleright Design resonators for full curve measurements:
 - Ensure entire $|S_{21}|$ curve lies above stray coupling limit.
 - The coupler sets $\min|S_{21}|$.
 - Desired Q_c can then be obtained by changing the length of the resonator \rightarrow change mode number *n*.

$$Q_{c} = \frac{n\pi}{\left|S_{21,coupler}\right|^{2}} \qquad n = \frac{f_{n}}{f_{0}} \qquad f_{0} = \frac{c_{0}}{2l_{resonator}\sqrt{\varepsilon_{r,eff}}}$$

Advantages:

- Full curve approach enables measurement of Q_c !
- Works for entire Q_i range of 100 to 10^5 !
- Not limited by frequency resolution of the source!
- 4 resonators on a single chip!

Conclusion and Outlook

- Measured losses of a superconducting microstrip at sub-K temperatures and **300 - 400 GHz!**
- Good match between modelled and measured FP response!
- \blacktriangleright Measured losses higher than expected.
 - Likely due to low NbTiN film quality \rightarrow new fabrication run.

Future work:

- Additional structures for microwave (4 8 GHz) measurements.
- Different dielectrics, deposited in-house \rightarrow Study effect of deposition conditions.