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#
, (3)

where Fqp is the pulse integral.
As we explain in next section, we excite the substrate by a

LED pulse whose duration Tex is of the order of few µs, so
the final waveform results from the convolution of Eq. 3 with
a rectangular function of length Tex.

For every acquired signal we fit the df pulse evolution to
the pulse shape described above, fixing tring to the value cor-
responding to the measured Q factor. In this way we obtain
tph that we compare with the MC results. Superposed to the
pulses of Fig. 1 we show the results form the fit for the df(t)
and da(t) signals.

𝛿𝑎

𝛿𝜙

FIG. 1: df and da pulse time evolution following an energy deposi-
tion of 36 keV in the Si substrate. The signals are fitted to the pulse
shape of Eq. 3, taking also into account Tex=1 µs (in red for df and
blue for da). The resulting df fit parameters are shown in the leg-
end. Inset: resonance circle that we calibrate to obtain df and da

components from the real and imaginary parts of the S21 signal.

B. Response to energy absorption

We can relate the energy release in the detector E to the
energy absorbed at every resonator Eabs through an efficiency
factor h , so that Eabs = hE. The efficiency can be factorized
as h = hKIDhpb, where hKID depends on the geometry of the
detector and the transmission coefficients at the interface, and
is the parameter that we shall calculate with the MC simula-
tion, and hpb is the pair-breaking efficiency in Al, that we take
as ⇠0.57 [18]. Now, Fqp in Eq. 3 represent the overall change
in df corresponding to an increment in the quasi-particle pop-
ulation Nqp=Eabs/D = hE/D, that can be calculated from the
Mattis-Bardeen theory in the thin film limit. After some ana-

lytical approximations [19, 20] we can write:

Fqp =
aS2(n ,Tqp)Q

N0V D(Tqp)
hE, (4)

where N0V is the single spin density of states at the Fermi level
(1.72⇥1010 eV�1 µm�3 for Al) multiplied by the active vol-
ume of the resonator, a is the fraction of kinetic inductance
LKI/L, Tqp is the effective temperature of the quasiparticle
system, larger than the sink temperature due to the microwave
power Pµn and

S2(n ,Tqp) = 1+

s
2D

pkBTqp
exp

✓
� hn

2kBTqp

◆
I0

✓
hn

2kBTqp

◆
,

(5)
where kB is the Boltzmann constant, h is the Planck constant
and I0 is the zero-order modified Bessel function of the first
class. The parameters D, a , S2 and Q are measurable quanti-
ties for a given Pµn , therefore from the pulse fit we can obtain
Fqp and determine through Eq. 4 the efficiency h at every
pixel in order to compare with the MC results.

III. EXPERIMENTAL CONFIGURATIONS

We study two different detector configurations with dif-
ferent KID characteristics and layout.

The first prototype (P1 in the following) consist of a single
KID lithographed on a 2⇥2 cm2 380 µm thick Si substrate.
Fig. 2 shows a picture of the detector mounted in the copper
holder (left panel) and a schematic design of the single KID
(right panel). The inductor section is a meander of 30 strips
of 62.5 µm⇥2 mm, with gap of 5 µm between them, and the
capacitor is made by only two fingers. The total active area
is 4.0 mm2 if we include the active region that connects the
inductor to the capacitor. The feedline is a 72 µm width CPW
that cut across the Si substrate from side to side. The pixel
and feedline are made of 60 nm thick Al. Four cylindrical
Teflon supports, one at every corner of the substrate, fix the
detector to a copper holder that is anchored to the cryostat.
The contact area between Si and Teflon is lower than 3 mm2 at
every support. For detailed results of this prototype, see [17].

The second prototype, that we label as P4, is a 2⇥2 cm2

375 µm thick Si substrate with 4 KIDs (see Fig. 2). The res-
onators are lithographed in 60 nm thick Al film, with an induc-
tive meander made of 14 connected strips of 80 µm⇥2 mm
closed by a capacitor made of 5 interdigitated fingers of
1.4 mm⇥50 µm. The active area of the single pixel is
1.15⇥ 2mm2. The feedline is a 420 µm width and 60 nm
thick CPW. The centers of each KID are not distributed sym-
metrically with respect to the central axis of the detector, but
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In most applications, the sensitivity of a Kinetic Inductance Detector (KID) is limited by the noise from the cryogenic amplifier. 
By increasing the readout power, this limit could be overcome at the cost of leading the resonator to the non-linear 
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inductance but also the temperature variations caused by power absorption.
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