Characterization of Transition Edge Sensors for Simons Observatory

Jason R. Stevens¹, Nicholas F. Cothard¹, Eve M. Vavagiakis¹, Jason E. Austermann², Steve Choi², Bradley J. Dober², Shannon M. Duff², Gene C. Hilton², Thuong D. Hoang², Johannes Hubmayr³, Adrian T. Lee³, Michael D. Niemack³, Christopher Raum³, Mario Renzullo³, Trevor Sasse³, Aritoki Suzuki³, Patrick Truitt⁴, Joel Ullom⁴, John Vivalda⁴, Michael R. Vissers⁴, Samantha Walker⁴, Benjamin Westbrook⁴, Daniel Yohannes⁴

INTRODUCTION

The Simons Observatory is building both small and large aperture telescopes to observe the cosmic microwave background (CMB) from Chile. These telescopes will use over 60,000 transition edge sensor (TES) bolometers in total to observe frequencies spanning 27 to 280 GHz. These sensors operate at sub Kelvin temperatures and take advantage of the rapid change in resistance that occurs over a superconducting transition. TES bolometers are being iteratively designed and fabricated for SO at NIST, Berkeley, and commercially by HYPRE corporation, based on results of detector testing at Cornell University. We present some results of these ongoing tests.

FOUR LEAD MEASUREMENTS

We use cryogenic four lead resistance measurements of the TES bolometers to determine their critical temperature and normal resistance.

Here is an example four lead measurement of a NIST fabricated UHF (220 GHz) TES at multiple excitations. While these parameters can also be obtained from the IV analysis, the four lead measurements are simpler to perform and provide complementary information to the IV curves [3].

REFERENCES

ACKNOWLEDGEMENTS

This work is supported by the Simons Foundation.

Laboratory Directed Research and Development (LDRD) funding from Berkeley Lab, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
Early Career Research Program (ECRP) program provided the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Contract No. DE-AC02-05CH11231
Small Business Innovative Research (SBIR) program provided the U.S. Department of Energy, Office of Science, Office of High Energy Physics, under Award Number DE-SC0018713, and Award Number: HYP-DE-SC0017818

IV MEASUREMENTS

By plotting the TES current vs voltage (I-V) through the transition, we can determine the saturation power (P_sat) required to drive the TES normal. Measuring P_sat at multiple temperatures allows us to fit the model

\[P_{\text{sat}} = k(T_{c} - T_{\text{bath}}) \]

Which relates the saturation power to the bath temperature and allows us to determine the superconducting critical temperature T_c and the thermal conductivity G = n k T^-1.

This is an example fit to the equation above for a set of Berkeley fabricated BTS-01 TES detectors with various leg lengths. These are appropriate saturation powers for LF and MF detectors.

BIAS STEP MEASUREMENTS

The time constant of the detector, which is the exponential decay rate that the TES will decay to a constant steady state with, can be measured by inputting a square wave into the TES bias line and measuring the current response.

Example bias step measurements for a 280GHz NIST UHF detector at various temperatures and bias points. NIST 280GHz TESes are the best measured thus far, tests of other detector types are ongoing.

NOISE MEASUREMENTS

Noise spectra are obtained by measuring TES current at constant temperature and bias power with a time domain multiplexing readout system.

A sample noise power spectrum from a NIST UHF 280GHz TES. Also plotted is a DC approximation of the thermal fluctuation noise, equal to (4 kT G)^1/2. G is obtained from the IV measurements, and Flink is assumed to be 1. The different curves correspond to different fractions of normal resistance. We are continuing to diagnose noise lines and 1/f variability in our testbed.