MODELING LOW-*T_c* TRANSITION-EDGE SENSORS MADE OF NS BILAYERS: THE SPECIFIC INTERFACE RESISTANCE

G. Wang¹ • C.L. Chang^{1,2,3} • M. Lisovenko^{4,5} • V. Novosad^{4,6} • J. Pearson⁴ • V.G. Yefremenko¹ • J. Zhang¹

¹High Energy Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA.
 ²Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA.
 ³Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA.
 ⁴Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.
 ⁵Nanoelectronics Department, Sumy State University, Sumy, 40007 Ukraine.
 ⁶Physics Division, Argonne National Laboratory, Lemont, IL 60439, USA.

MOTIVATION

To understand the physics of Transition-Edge Sensors made of normal metal – superconductor (NS) bilayers. To quantitatively characterize the interface transport parameters of NS bilayers by fitting experimental data of Ir/Au to a transition temperature calculation model.

APPROACH

The T_c of an NS bilayer can be calculated with the equations (1) – (4) below (Wang et al., IEEE Trans. on Appl. Supercon., 27, 2100405 (2017)):

$$ln\left(\frac{T_{C}}{T_{CS}}\right) = -\int_{0}^{\hbar\omega_{D}} \frac{dE}{E} f_{A} \tanh\left(\frac{E}{2k_{B}T_{C}}\right), \quad (1) \qquad f_{A} = \frac{f_{1}}{1+f_{2}^{2}}, \quad (2)$$

$$f_{1} = \frac{1+\frac{\hbar^{2}}{(E\tau)^{2}}}{1+\frac{\hbar^{2}}{(E\tau)^{2}}+\frac{d_{S}N_{S}}{d_{N}N_{N}}}, \quad (3) \qquad f_{2} = \frac{\left(1+\frac{\hbar^{2}}{(E\tau)^{2}}\right)d_{S}N_{S}Ea_{L}+\frac{\hbar}{E\tau}\frac{d_{S}N_{S}}{d_{N}N_{N}}}{1+\frac{\hbar^{2}}{(E\tau)^{2}}+\frac{d_{S}N_{S}}{d_{N}N_{N}}}, \quad (4)$$

where T_{CS} is the transition temperature of a bare superconducting film, $\hbar\omega_D$ is the Debye cutoff energy, τ is the electron spin relaxation time in the normal metal ($\tau = \infty$ for Au), $d_{N,S}$ are the thicknesses of the normal metal and superconductor respectively, $N_{N,S}$ are the densities of states of normal metal and superconductor respectively. The parameter characterizing the transport properties of an NS interface is a_L in equation (4). It is related to the specific interface resistance Rb of an NS interface, i.e., $a_L = 4\pi G_K Rb$ with $G_K = e^2/h$.

The temperature-independent specific interface resistance is $Rb = (\lambda_F/2)^2/2tG_K$, where λ_F is electron Fermi wavelength, and t is a parameter quantifying the electron transmission efficiency across an NS interface. Note that 1/Rb is the interface conductance in the unit of S/m^2 .

The temperature-dependent specific interface resistance is $Rb(T) = F^* d_S \rho / 2 + 1/g_{NS}$, where ρ is the resistivity of a superconductor at normal, F^*

is for the quasiparticle injection efficiency, which is defined in the BTK model (Blonder *et al.*, Phys. Rev. B, **25**, 4515, (1982)). The first term on the right is due to charge imbalance (M. Tinkham and J. Clarke, Phys. Rev. Lett., 28, 1366, (1972)). The tunneling conductance of an NS interface is

$$g_{NS} = g_0 \int_{-\infty}^{\infty} \left(-\frac{\partial f_0}{\partial E} \right) \left(2A(E) + C(E) + D(E) \right) dE,$$
(5)

where the tunneling conductance constant $g_0 = 2N_S e^2 V_F$. V_F is Fermi velocity. f_0 is electron distribution function at equilibrium. A, C and D are summarized in the BTK model, and contain a hidden parameter, $Z = H/(\hbar V_F)$ which characterizes the NS interface barrier strength H.

Model vs. experiment of the reduced transition temperature T_C/T_{CS} of Ir/Au bilayers. T_{CS} is the transition temperature of the bare Ir films. Experimental data are from Nagel *et al.*, J. Appl. Phys., **110**, 063919, (1994). Blue circles are the best fit results with reduced $\chi^2 = 0.95$ using temperature-independent *Rb*. The red squares are the best fit results with reduced $\chi^2 = 0.78$ using temperature-dependent *Rb*. The red line is for visual guide.

The specific interface resistances of Ir/Au bilayers estimated by fitting measured T_C to its calculation model. The blue circles are for the temperature-independent $Rb = 0.82 \text{ f}\Omega m^2$ obtained from a least χ^2 fit. The red triangles are for the temperature-dependent Rb obtained from a least χ^2 fit with two contributions: charge imbalance; and BTK tunneling model with $g_0 = 635.1 \text{ TS}/m^2$, and Z = 0.02, which means a metallic contact between the Ir film and the Au film.

