

# **High Resolution Photonic MKID Spectrograph**

M. Daal<sup>1</sup>, Renan Moreira<sup>2</sup>, J. Bailey<sup>1</sup>, and B. A. Mazin<sup>1</sup> <sup>1</sup> University of California, Santa Barbara, <sup>2</sup> Ultra-low Loss Technologies

# **SPECIFICATIONS**

## MKIDS

Make a single mode fiber (SMF) fed spectrometer,  $R \sim 5,000$ , suitable for use at any large telescope where the light is channelized by a photonic circuit chip and then detected by a separate chip with an energy-resolving superconducting detector (MKID) array.

- Wavelength Range: 400 800 nm
- Free Spectral Range:  $\sim 100$  nm
- Number of Channels:  $\gtrsim 1024$
- Chan-to-Chan Extinction Ratio:  $\gtrsim 30 \text{ dB}$
- Photonic and MKID Chip areas:  $\geq 4 \text{ cm}^2 \text{ each}$

- Bolometric modes
- superconductor, Lk
- calorimetric mode
- Possible to couple inductor to photons exiting output waveguides or output waveguide evanescent waves



- Operation Temp:  $\approx 100 \text{ mK}$
- Throughput (Fiber to MKID): 60%

Ultimate Goal: MMF/SMF fed high resolution spectrometer on a single chip integrating LTD and photonic circuit.

### **WHY PHOTONICS?**

**Photonics**: Devices that make use of optical waveguides or other structures or materials that can manipulate properties of light such as phase and direction.

![](_page_0_Figure_21.jpeg)

#### WHY MKIDS?

The MKID is necessary to:

oupling Capacito

- Exploit multiplexibility to obtain thousands channels
- Use adaptive optics of telescopes to format light in to single mode fiber (or MMF + Lantern)
- Photonic circuits puts conventional spectrograph collimator, disburser and camera optics on a few cm<sup>2</sup> chip
- Small size avoids thermal and vibration deflections
- SMF stabilize instrument response to input beam illumination fluctuations (e.g. pointing induced), a.k.a. 'Spatial Filtering'
- Spectrometer's component sizes no longer scale with telescope aperture
- Fiber feed avoids cryostat windows
- Cheaper after technology development investment
- Multiple spectrograph chips enable integral field or multi-object format

#### Photonic MKID Spectrograph

![](_page_0_Picture_34.jpeg)

![](_page_0_Picture_35.jpeg)

- Use intrinsic energy resolution to sort the orders in each output channel  $\bullet$ of the photonic circuit. Target: 3 – 5 orders sorted
- Single photon sensitivity, lack of read noise and integration time enable  $\bullet$ time resolved spectroscopy and high sensitivity to faint objects
- Miniaturization afforded by ability to position detectors only at out channel locations

![](_page_0_Picture_39.jpeg)

Linear Detector array: 5 rows of 2048 MIKDS Pixels: Objective 20  $\mu$ m pitch, 65  $\mu$ m

| - | Current Status |              |
|---|----------------|--------------|
|   | _100 nm<br>    | $_{00} = 10$ |

![](_page_0_Figure_42.jpeg)

'Arrayed Waveguide Gratings' acting as filter bank put light in to N channel centered at  $\lambda_i$ ,  $\Delta\lambda$  wide, and, spectral resolution  $R = \lambda/_{\Lambda\lambda} = E/_{\Lambda E}$ , FSR apart. However, each channel contains many orders:  $n\lambda_i$ ,  $(n + 1)\lambda_i$ ,  $(n+2)\lambda_i,\cdots$ 

![](_page_0_Figure_44.jpeg)

#### **RESEARCH TASKS**

• Measure optical properties of photonic circuitry test at < 1 K • Photonic circuit design incorporating above • Photonic circuit to MIKD chip butt coupling design and test at < 1 K • Demonstration of spectrum from known source

July 21<sup>th</sup> – 26<sup>th</sup> 2019, Milano 18<sup>th</sup> International Workshop on Low Temperature Detectors, Poster #378