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Abstract
We present developments in the simulation of Transition-Edge Sensor (TES) microcalorimeters under AC bias for the purpose of detector studies. The presented model extends
the TES differential equation system by describing the TES as a resistively shunted junction, using the Josephson equations instead of a parametrized resistance. To demonstrate
the performance of this model, we compare simulated and measured IV curves of a pixel characterized for the Athena X-ray Integrated Field Unit (X-IFU) and showcase the signal
generated by a simulated X-ray pulse.

Athena X-IFU

• Instrument on planned Athena X-ray observa-
tory, launch early 2030s [4, 2]

• Array of more than 3000 TES Microcalorime-
ters

• Operates pixels in frequency domain multi-
plexing (FDM)
=⇒ pixels operated under AC bias (1-5 MHz)
[1]

For instrument development: Dedicated end-to-
end simulator xifusim (⇒ Poster #251, M.
Lorenz) including TES physics, cryogenic read-
out and on-board data processing.

In current simulator: TES modeled by linear
transition R(T, I) [6] ⇒ How to improve?

TES RSJ Model
• TESs under AC bias have been found to be-

have like a weak link between superconduct-
ing leads [5]

• In the steady state, TESs modeled as a
resistively-shunted junction (RSJ) have been
used to explain measured TES resistances and
inductances [3]

• This poster: Model TES as RSJ in the time-
domain, with the goal of simulating pulses of
a calorimeter
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Figure 1: Left: TES electrical circuit. Right: TES critical current values, with
data points as crosses and an extended model fit [5, 3]

Model:
• Electrical circuit: AC bias voltage with RLC filter

tuned to bias frequency and TES
• TES replaced with Josephson junction shunted by

TES normal resistance RN
• Junction satisfies Josephson equations:

VTES =
}
2e

∂ϕ

∂t
, IJ(t) = IC(T ) sinϕ(t), (1)

with critical current IC(T ) taken from fit to measured
values (Fig. 1, right)

TES equation system
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VTES = (Ic(T ) sin(ϕ(t)) + I(t)) · RN (3)
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Pbath = K (T
n − T nbath) (7)

AC Behavior
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Figure 2: Behavior of the RSJ system during a single period of a 1 MHz pixel.
(a) Current I (blue) and IJ from Eq. 1 (red) alongside ± IC(T ) (red dashed lines)

|I| < IC(T )
• VTES very small, as IJ ≈ −I
• TES effectively supercon-

ducting
• No Joule heating

|I| > IC(T )
• VTES much larger, drives ϕ
• Creates effective TES re-

sistance
• Pulses of Joule heating
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IV Curve
First order test:
• use existing IV curve of modeled pixel as starting points to a simulation
• compare stable points reached in simulation with measured IV curve at same bias voltage
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=⇒ General agreement, although
model temperatures trend slightly
lower and highest bias points already
reached 100 % RN

Figure 3: Stable points of the RSJ model for
selected applied voltages (red crosses) in com-
parison with a measured IV curve of the modeled
pixel (blue lines)

X-ray Pulses

• Simulate X-ray pulses via setting Pphot in Eq. 6 (Here: Instant absorption of full photon energy)
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Figure 4: Two X-ray pulses simulated for a pixel
biased at 50 % RN . The two panels show the
RMS current of the TES and the pulses normed
to equal peak value respectively. The pulse en-
ergies are 1 keV (blue) and 10 keV (red)

• 1 keV pulse shows characteristic TES pulse shape with duration of ∼ 4ms
• 10 keV pulse shows extended peak =⇒ TES reaches normal resistance during pulse, due to bias high

in the transition (50 % RN)
=⇒ Future work: Compare with measured pulses and other models such as linear resistance or tabulated
R(T, I) (⇒ Poster #97, L. Gottardi)
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