Recombination times in aluminum co-planar waveguide KIDs

Adalyn Fyhrie¹, Peter Day², Jason Glenn¹, Henry G. LeDuc² Jonas Zmuidzinas², Christopher McKenney³, Joanna Perido¹ 1: CU Boulder, 2: JPL, 3: NIST

For more information, please email adalyn.fyhrie@colorado.edu

This work is supported in part by a NASA APRA grant

How thin can you go: Does metal thickness affect recombination times?

 INTRO
 Design study to approach low NEP's needed for Galaxy Evolution Probe [1]

For 1/4 wavelength aluminum CPWs, 40 and 50 nm thick films have same time constant: ~1-1.8 ms.

- Want: long time constants and low volume
- Time constant τ : how long it takes quasiparticles to recombine

METHODS

- Detectors: 1/4 (grounded) and 1/2 λ (ungrounded) coplanar waveguide aluminum kinetic inductance detectors
- 20, 30, 40, 50 nm thick films
- Center conductor widths
 0.6, 1.5 μm and 3 μm

2000

----- Tc = 0.8

50 nm 1/4 Å Center conductor width 1.5 μ m Possible under-prediction (note low T_C)

----- Tc = 0.8

Fit parameters as a function of fit length (how much data we use) and an example fit

40 nm: temperature sweep of decay with fits (dashed lines)

Time constants decrease with readout power

Center conductor width 1.5 µm

τ similar for 30-50 nm films: Thickness [nm] - [ms]

Quasiparticle diffusion into ground plane does not seem to matter for grounded devices:

20	2.5-5
30	1-2.5
40	1-1.8
40 1/2 λ	1-2.2
50	1-1.8

τ decreases with readout

power

DISCUSSION

- Diffusion of quasiparticles into ground plane doesn't seem to matter
- High readout powers suppress time constants
- X(t) parameterization fits well but sensitive to noise

- 1/2 λ ungrounded CPWs have ~ same τ as 1/4 λ grounded CPWs
- Center conductor width does not affect τ for a given array

[1] Galaxy Evolution Probe Concept Study (2019), J.Glenn https://smd-prod.s3.amazonaws.com/science-red/s3fs-public/atoms/files/GEP_Study_Rpt.pdf [2] Fyhrie et al. 2018, "Progress Towards Ultra-Sensitive KIDs for Future Far-Infrared Missions: A Focus on Recombination Times"