

Temperature and concentration dependence of the heat capacity contribution of holmium ions embedded in metallic absorbers of MMC detectors developed for the ECHo experiment

<u>A. Reifenberger¹, C. Enss¹, A. Fleischmann¹, L. Gastaldo¹, M. Herbst¹, S. Kempf¹, F. Mantegazzini¹, C. Velte¹,</u> H. Dorrer², C. Düllmann², T. Kieck², K. Wendt², and U. Köster³

Kirchhoff-Institute for Physics, Heidelberg University, Germany

Motivation: The ECHo Experiment

• Determine $m_{\nu_{e}}$ through analysis of the endpoint region of the 163 Ho electron capture spectrum

$$^{163}_{67} \text{Ho} \longrightarrow {}^{163}_{66} \text{Dy}^* + \nu_e$$

$$\downarrow {}^{163}_{66} \text{Dy} + E_C \longrightarrow \text{measure}$$

• Detector: Metallic magnetic calorimeters with ¹⁶³Ho enclosed in the absorbers

• Detector optimization requires a precise understanding of the contributions to the total detector heat capacity due to the presence of $^{163}Ho \longrightarrow Determine specific heat C per Ho-atom$

- Check influence of the following parameters on specific heat C:
 - <u>Temperature</u>: ECHo operated at $T \le 20 \,\mathrm{mK}$, strong C(T) dependence might influence performance
 - Holmium concentration: optimize implantation procedure for desired concentration

Theoretical Approach

² Johannes Gutenberg University, Mainz, Germany

³ Institut Laue-Langevin, France

Ho³⁺: S = 2, L = 6, J = 8

Hyperfine splitting (with nuclear spin I = 7/2): $17 \times 8 = 136$ energy levels in a single Ho³⁺ \rightarrow Schottky anomalies of Ho main source of C

Other interactions:

- Crystal field effects
- Holmium–holmium interactions:

• Host material: Check influence of crystal field, quadrupole splitting, ... for candidates such as Au, Ag

4f-orbital is shielded \rightarrow to first order, Ho³⁺ is isolated

dipole-dipole and RKKY interactions

Overview of Samples

• Ho in silver and Ho in gold, three different $x_{\rm Ho}$ of each • Most samples manufactured in arc welding furnace, then pressing, cutting, filing, chemical etching • S4 created by implanting 163 Ho directly into host material • Concentrations determined via three different methods: S1, S2, S3: Magnetization measurement

S4: Activity measurement and implantation simulations S5, S6: Mixing ratio of original Au and Ho

0.0162% - 3%Holmium concentration x_{Ho} : Sample masses (w/o S4): 1 mg - 30 mg

Principle of Measurement

Addenda: $C_{\text{Add}}\dot{T}_{\text{Add}} = P_{\text{H}} + G_1 (T_0 - T_{\text{Add}}) + G_2 (T_{\text{S}} - T_{\text{Add}})$

 $C_{\rm S} \dot{T}_{\rm S} = G_2 \left(T_{\rm Add} - T_{\rm S} \right)$ Sample:

 \rightarrow Numerical fitting allows extraction of $C_{\rm S}$, G_1 , and G_2

Experimental Set-up: QD-Puck

Experimental Set-up: Tsingy

Experimental Set-up: ECHo Detector

• Commercially available platform built by Quantum Design • Both heater and thermometer realized by temperature dependent RuOx resistors • Heat capacity of addenda: 4 nJ/K @ 50 mK

 $1\,\mu\mathrm{K}/\sqrt{\mathrm{Hz}}$ @ 50 mK • Temperature resolution:

 \rightarrow Workhorse experiment, easy operation

- Designed and manufactured at Heidelberg University
- MMC-style thermometry, including gradiometric set-up read out by two-stage SQUID configuration
- Heat capacity of addenda: $400 \,\mathrm{pJ/K} @ 50 \,\mathrm{mK}$
- Temperature resolution: $30 \,\mathrm{nK}/\sqrt{\mathrm{Hz}} @ 50 \,\mathrm{mK}$

 \rightarrow Extremely precise experiment for low-C measurements

• Designed and manufactured at Heidelberg University

- MMC with double meander design,
- one absorber implanted with ¹⁶³Ho
 - \rightarrow Pulse height difference allows for determination of Ho-related specific heat C
- Temperature increase induced by X-rays from $^{55}\mathrm{Fe}$ source
- \rightarrow In-situ determination of 163 Ho heat capacity contribution

Results

Concentration Dependence

Host Material Dependence

Summary: Experimental Parameters and Interactions

Temperature dependence:

• Large Schottky anomaly around $300 \,\mathrm{mK}$ \rightarrow mainly magnetic hyperfine splitting in Ho

<u>Hyperfine splitting:</u>

- Main source of Schottky peak
- **Crystal field:**
- "Shift" of peak , dependent on host material

Concentration dependence:

• low $x_{\rm Ho}$ leads to broadening of peak, additional shoulder, increased C at low T \rightarrow Ho–Ho interaction weaker

Host material dependence:

• "Shift" of main peak \rightarrow crystal field

• More pronounced shoulder and higher C in silver at low T (for comparable x_{Ho}) \rightarrow stronger RKKY interaction in silver

> [1] M. Krusius et al., Phys. Rev., **177**(2), 888–892, 1969 [2] O. V. Lounasmaa, *Phys. Rev.*, **128**(3), 1136-1139, 1962

Ho–Ho interactions:

• Contribution at low *T*, dependent on $x_{\rm Ho}$ • Strength of RKKY depends on host material

Conclusion

Minimize specific heat by choosing... • Holmium concentration $x_{\text{Ho}} \ge 1\%$

• Temperature $T \le 20 \,\mathrm{mK}$

Silver as host material

Heidelberg University