

Alessandro Paiella for the OLIMPO detector team

18th International Workshop on Low Temperature Detectors July 22-26, 2019, Milano, Italy

Galaxy Clusters

- Galaxy Clusters are the largest gravitationally bound structures in the Universe, which can be observed across
 the entire electromagnetic spectrum.
- The strength of observing them at mm wavelengths lies in the possibility to study the low density parts, their periphery, and the filaments of ionized matter connecting clusters.

Planck image); credits:

Sunyaev–Zel'dovich effect

- The way to study galaxy clusters at mm wavelengths is through the Sunvaev-Zel'dovich (SZ) effect of the CMB photons.
- CMB photons crossing the hot gas of clusters of galaxies, acquire energy from charged scatterers (via inverse Compton), and their spectrum is perturbed with a very distinct spectral signature.

- A spectral measurement of CMB anisotropy can vastly improve the accuracy, allowing efficient, unbiased separation of the CMB and SZ components from all other components in the same LOS (at least 8 independent points);
- It can be done only from space or the stratosphere due to atmospheric opacity and noise.

- The OLIMPO experiment is a first attempt at spectroscopic measurements of CMB anisotropy.
- OLIMPO uses the CMB as a backlight to study the largest structures in the Universe.
- OLIMPO is a large balloon-borne observatory
 - with a 2.6 m aperture telescope;
 - with 4 horn-coupled LEKID arrays, centered at 150, 250, 350 and 460 GHz, matching the negative, zero, and positive regions of the SZ spectrum,
 - cooled to 0.3 K by a ³He refrigerator in a we LN₂+L⁴He cryostat;
 - with a plug-in room-temperature differential Fourier transform spectrometer (DFTS);
 - with a custom attitude control system (ACS), which allow to point the telescope in the direction of the selected galaxy clusters with arcmin accuracy.
- For more details see http://olimpo.romal.infn.it

- The OLIMPO experiment is a first attempt at spectroscopic measurements of CMB anisotropy.
- OLIMPO uses the CMB as a backlight to study the largest structures in the Universe.
- OLIMPO is a large balloon-borne observatory
 - with a 2.6 m aperture telescope;
 - with 4 horn-coupled LEKID arrays, centered a 150, 250, 350 and 460 GHz, matching the negative, zero, and positive regions of the SZ spectrum,
 - cooled to 0.3 K by a ³He refrigerator in a wet LN₂+L⁴He cryostat;
 - with a plug-in room-temperature differentia Fourier transform spectrometer (DFTS);
 - with a custom attitude control system (ACS), which allow to point the telescope in the direction of the selected galaxy clusters with arcmin accuracy.
- For more details see http://olimpo.roma1.infn.it

- The OLIMPO experiment is a first attempt at spectroscopic measurements of CMB anisotropy.
- OLIMPO uses the CMB as a backlight to study the largest structures in the Universe.
- OLIMPO is a large balloon-borne observatory
 - with a 2.6 m aperture telescope;
 - with 4 horn-coupled LEKID arrays, centered at 150, 250, 350 and 460 GHz, matching the negative, zero, and positive regions of the SZ spectrum,
 - cooled to 0.3 K by a ³He refrigerator in a wet LN₂+L⁴He cryostat;
 - with a plug-in room-temperature differential Fourier transform spectrometer (DFTS);
 - with a custom attitude control system (ACS), which allow to point the telescope in the direction of the selected galaxy clusters with arcmin accuracy.
- For more details see http://olimpo.roma1.infn.it

- The OLIMPO experiment is a first attempt at spectroscopic measurements of CMB anisotropy.
- OLIMPO uses the CMB as a backlight to study the largest structures in the Universe.
- OLIMPO is a large balloon-borne observatory
 - with a 2.6 m aperture telescope;
 - with 4 horn-coupled LEKID arrays, centered at 150, 250, 350 and 460 GHz, matching the negative, zero, and positive regions of the SZ spectrum,
 - cooled to 0.3 K by a ³He refrigerator in a wet LN₂+L⁴He cryostat;
 - with a plug—in room—temperature differential Fourier transform spectrometer (DFTS);
 - with a custom attitude control system (ACS), which allow to point the telescope in the direction of the selected galaxy clusters with arcmin accuracy.
- For more details see http://olimpo.roma1.infn.it

- The OLIMPO experiment is a first attempt at spectroscopic measurements of CMB anisotropy.
- OLIMPO uses the CMB as a backlight to study the largest structures in the Universe.
- OLIMPO is a large balloon-borne observatory
 - with a 2.6 m aperture telescope;
 - with 4 horn-coupled LEKID arrays, centered at 150, 250, 350 and 460 GHz, matching the negative, zero, and positive regions of the SZ spectrum,
 - cooled to 0.3 K by a ³He refrigerator in a wet LN₂+L⁴He cryostat;
 - with a plug-in room-temperature differential Fourier transform spectrometer (DFTS);
 - with a custom attitude control system (ACS), which allow to point the telescope in the direction of the selected galaxy clusters with arcmin accuracy.
- For more details see http://olimpo.roma1.infn.it

- \bullet OLIMPO was launched from the Longyear byen airport (78 $^{\circ}$ N), in Svalbard Islands, at 07:07 GMT on July $14^{\rm th},$ 2018.
- In–flight analysis: measurements carried out in the first day of the flight, when the fast (500 kbps) bidirectional LOS telemetry was active.

Fast Forward 4

Alessandro Paiella

OLIMPO LEKIDS

- Absorber/Inductor: IV order Hilbert in Al $30 \text{ nm thick } (T_c = 1.31 \text{ K}, R_{\Box} = 1.21 \Omega/\Box);$
- Radiation coupling: front-illuminated via single-mode (flared) circular waveguide;

- Electrical coupling: via capacitors to a
- More details in A. Paiella et al., JCAP

OLIMPO LEKIDS

- Absorber/Inductor: IV order Hilbert in Al 30 nm thick $(T_c = 1.31 \text{ K}, R_{\square} = 1.21 \Omega/\square);$
- Radiation coupling: front-illuminated via single-mode (flared) circular waveguide;
- Substrate, number of detectors & resonant frequencies:

Channel [GHz]	Si wafer $d[''] \times t [\mu m]$	#	$ \nu_r $ [MHz]
150	3×135	19 + 4	[146; 267]
250	3×100	37 + 2	[150; 335]
350	2×310	23 + 2	[362; 478]
460	2×135	41 + 2	[288; 487]

- Electrical coupling: via capacitors to a 50Ω -matched microstrip feedline and to the ground, and such that $Q_c \sim 15000$.
- More details in A. Paiella et al., JCAP 2019.

OLIMPO LEKIDS

- Absorber/Inductor: IV order Hilbert in Al 30 nm thick $(T_c = 1.31 \text{ K}, R_{\square} = 1.21 \Omega/\square);$
- Radiation coupling: front-illuminated via single-mode (flared) circular waveguide;
- \bullet Substrate, number of detectors & resonant frequencies:

Channel [GHz]	Si wafer $d[''] \times t [\mu m]$	#	$ u_r $ [MHz]
150	3×135	19 + 4	[146; 267]
250	3×100	37 + 2	[150; 335]
350	2×310	23 + 2	[362; 478]
460	2×135	41 + 2	[288; 487]

- Electrical coupling: via capacitors to a 50Ω -matched microstrip feedline and to the ground, and such that $Q_c \sim 15000$.
- More details in A. Paiella et al., JCAP 2019.

OLIMPO LEKIDs

- Absorber/Inductor: IV order Hilbert in Al 30 nm thick $(T_c = 1.31 \text{ K}, R_{\square} = 1.21 \Omega/\square);$
- Radiation coupling: front-illuminated via single-mode (flared) circular waveguide;
- Substrate, number of detectors & resonant frequencies:

Channel [GHz]	Si wafer $d[''] \times t [\mu m]$	#	$ \nu_r $ [MHz]
150	3×135	19 + 4	[146; 267]
250	3×100	37 + 2	[150; 335]
350	2×310	23 + 2	[362; 478]
460	2×135	41 + 2	[288; 487]

- Electrical coupling: via capacitors to a 50Ω -matched microstrip feedline and to the ground, and such that $Q_c \sim 15000$.
- More details in A. Paiella et al., JCAP 2019.

Ground Performance (A. Paiella et al., JCAP 2019)

Channel [GHz]	Active Pixels	FWHM [GHz]	\mathcal{R}_{el} [rad/pW]	\mathcal{R}_{op} $[\mathrm{rad/pW}]$	$\varepsilon = \mathcal{R}_{op}/\mathcal{R}_{el}$ %	$\begin{bmatrix} \text{NEP} \\ \text{aW}/\sqrt{\text{Hz}} \end{bmatrix}$	$\begin{bmatrix} \text{NET}_{\text{RJ}} \\ \mu \text{K} \sqrt{\text{s}} \end{bmatrix}$
150	16 + 4 (87%)	25	1.4 ± 0.1	0.24 ± 0.04	$> 18 \pm 3$	178 ± 27	182 ± 27
250	32 + 2 (87%)	90	1.8 ± 0.4	0.16 ± 0.01	$> 9 \pm 2$	879 ± 132	250 ± 38
350	21 + 2 (92%)	30	2.8 ± 0.1	0.29 ± 0.03	$> 10 \pm 1$	289 ± 43	247 ± 37
460	41 + 2 (100%)	60	4.2 ± 0.2	0.16 ± 0.04	$> 4 \pm 1$	771 ± 116	329 ± 49

Tuning (S. Masi et al., JCAP 2019)

Background and Temperature variations (S. Masi et al., JCAP 2019)

- 6 s < t < 10 s insertion of the (room-T) DFTS
 - through a moving relay mirror, which introduces the DFTS optical system in the optical path between the telescope and the cryostat.
 - All the optically active pixels react to the radiative background change, which gradually illuminates the entire array.
 - The dark pixels do not respond.
- $t \sim 9$ s all the dark pixels react and their response is coherent and smaller: thermal
 - We estimated the temperature variation of the arrays: 7 mK for the 150 and 250 GHz arrays, 10 mK for the 350 GHz array and 14 mK for the 460 GHz array.
- $\bullet\ t>14{\rm s}$ all detectors outputs remain stable after the insertion of the relay mirror is completed.

Background and Temperature variations (S. Masi et al., JCAP 2019)

- 6 s < t < 10 s insertion of the (room-T) DFTS
 - through a moving relay mirror, which introduces the DFTS optical system in the optical path between the telescope and the cryostat.
 - All the optically active pixels react to the radiative background change, which gradually illuminates the entire array.
 - The dark pixels do not respond.
- $t \sim 9$ s all the dark pixels react and their response is coherent and smaller: thermal.
 - We estimated the temperature variation of the arrays: 7 mK for the 150 and 250 GHz arrays, 10 mK for the 350 GHz array and 14 mK for the 460 GHz array.
- ullet $t>14{
 m s}$ all detectors outputs remain stable after the insertion of the relay mirror is completed.

Background and Temperature variations (S. Masi et al., JCAP 2019)

- 6 s < t < 10 s insertion of the (room-T) DFTS
 - through a moving relay mirror, which introduces the DFTS optical system in the optical path between the telescope and the cryostat.
 - All the optically active pixels react to the radiative background change, which gradually illuminates the entire array.
 - The dark pixels do not respond.
- $t \sim 9$ s all the dark pixels react and their response is coherent and smaller: thermal.
 - We estimated the temperature variation of the arrays: 7 mK for the 150 and 250 GHz arrays, 10 mK for the 350 GHz array and 14 mK for the 460 GHz array.
- ullet $t>14\,\mathrm{s}$ all detectors outputs remain stable after the insertion of the relay mirror is completed.

Calibration Lamp

- The calibration lamp is composed of
 - a resistor heating, from 1.6 K to 25 K,
 - \bullet an absorbing surface (emissivity 28%),
 - in an integrating cavity coupled to a Winston cone (efficiency 50%).
- It is placed at the center of the Lyot stop of the OLIMPO Offner reimaging system and has an aperture which fills the 5% of the Lyot stop area.
- Its emission illuminates with an approximately parallel beam all the detectors, with a maximum variation of a factor 2 of the illumination level across each focal plane surface.
- As a result, its 25 K blackbody emission is diluted by a factor of the order of ~150 to ~300 depending on the position of the pixels in the focal plane.

Calibration Lamp (S. Masi et al., JCAP 2019)

- We used the calibration lamp to estimate the in–flight performance.
- We normalized the ground and in-flight calibration lamp signals to the same value, transferring all the information in the noise.
- We obtained in-flight performance very close to be photon-noise limited for all the arrays.

Channel [GHz]	N_g/N_f	photon–noise $\operatorname{NET}_{\mathrm{RJ}}\left[\mu\mathrm{K}\sqrt{\mathrm{s}} ight]$	$\begin{bmatrix} \text{NET}_{\text{RJ}} \\ \left[\mu \text{K} \sqrt{\text{s}} \right] \end{bmatrix}$
150	2	70	91 ± 18
250	8	30	31 ± 6
350	3.5	80	71 ± 14
460	4.5	90	73 ± 15

Cosmic Ray data contamination (S. Masi et al., JCAP 2019)

- 820 s—long timestream, 100 000 samples (stable telescope boresight);
- 150 GHz array: $\tau \sim 17$ ms, presence of thermal effects.
- 460 GHz array (representative for the 250 and 350 GHz arrays): $\tau < 8 \, \mathrm{ms}$ and amplitudes consistent with the expected ones.
- Count fit: Gaussian noise+dN/dS

$$\frac{dN}{dS} = 2\pi A_o \frac{dN}{dAd\Omega} \frac{(kx)^2}{S^3}$$

150 GHz array

460 GHz array

Cosmic Ray data contamination (S. Masi et al., JCAP 2019)

- 820 s—long timestream, 100 000 samples (stable telescope boresight);
- 150 GHz array: $\tau \sim 17$ ms, presence of thermal effects.
- 460 GHz array (representative for the 250 and 350 GHz arrays): $\tau < 8 \,\mathrm{ms}$ and amplitudes consistent with the expected ones.
- Count fit: Gaussian noise+dN/dS

$$\frac{dN}{dS} = 2\pi A_o \frac{dN}{dAd\Omega} \frac{(kx)^2}{S^3}$$

Cosmic Ray data contamination (S. Masi et al., JCAP 2019)

- 820 s—long timestream, 100 000 samples (stable telescope boresight);
- 150 GHz array: $\tau \sim 17$ ms, presence of thermal effects.
- 460 GHz array (representative for the 250 and 350 GHz arrays): $\tau < 8 \,\mathrm{ms}$ and amplitudes consistent with the expected ones.
- Count fit: Gaussian noise+dN/dS

$$\frac{dN}{dS} = 2\pi A_o \frac{dN}{dAd\Omega} \frac{(kx)^2}{S^3}$$

Channel	Fraction of
[GHz]	contaminated data
150	< 2.7%
250	< 2.8%
350	< 0.1%
460	< 0.2%

150 GHz array

460 GHz array

Cosmic Ray data contamination

- Dark pixel vs. centre pixel scatter plots:
- data with $r > \sqrt{\sigma_x^2 + \sigma_y^2}$, where σ_x and σ_y are the standard deviations of the despiked signals.
- 150 GHz array: correlation of the spikes, even if the considered pixels are separated by a physical distance of 35 mm
- 250, 350 and 460 GHz arrays: the L-shaped clouds demonstrate that CR events producing spikes in one of the two pixels do not produce spikes in the other one.
- Our strategies to thermalize the arrays and damp the propagation of phonons was much less effective for the 150 GHz array.

Conclusions

- OLIMPO operated 4 arrays of horn-coupled Al LEKIDs in the stratosphere, which is a representative near-space environment:
 - OLIMPO LEKID arrays showed in-flight performance very close to be photon-noise-limited under the low radiative background of the stratosphere.
 - The cosmic ray background experienced by OLIMPO is representative of the primary cosmic ray background in low-Earth orbit.
- We are analyzing the scientific data.
- OLIMPO was recovered and all the subsystems were
- We are planning to repair the experiment in view of a

Conclusions

- OLIMPO operated 4 arrays of horn-coupled Al LEKIDs in the stratosphere, which is a representative near-space environment:
 - OLIMPO LEKID arrays showed in-flight performance very close to be photon-noise-limited under the low radiative background of the stratosphere.
 - The cosmic ray background experienced by OLIMPO is representative of the primary cosmic ray background in low-Earth orbit.
- We are analyzing the scientific data.
- OLIMPO was recovered and all the subsystems were checked: the gondola, the cryostat plumbing and the ACS are damaged.
- We are planning to repair the experiment in view of a possible second flight.

