

Charged fluctuators as a limit to the coherence of superconductors

Hélène le Sueur ^{1,2}

¹ Quantronics Group, Service de Physique de l'Etat Condensé, **CEA Saclay** ² Centre de Sciences Nucléaires et de Sciences de la Matière, **CNRS Orsay**

Many promises for disordered superconductors: Lossless high impedances

$$Z_C = \sqrt{\frac{L}{C}} \leqslant Z_{\rm vac} = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377\,\Omega \quad \Longrightarrow \quad \delta\varphi < \delta q \, \frac{Z_{\rm vac}}{R_Q} \approx 0.06\,\delta q$$

Adding inductance (Josephson or Kinetic) opens new perspectives

- New types of circuits dual to Josephson circuits (charge localization versus phase localization)
- Strong coupling between electrons and photons (Josephson photonics)
- High Lk and high non linearities (at the single photon level?) (KIDs, parametric amplifiers, tunable superinductors, SSPDs, Qbits, ...)

BUTs ! (there are -at least- 2)

High Z means coupling to charge noise

Sensitive to offset charge

charge getting localized => less screening

Coupling of a high Z electromagnetic mode to a charged dipole

Coupling
$$g = \vec{p} \cdot \vec{E_{ZPF}} \sim \frac{a_0}{L} \sqrt{\frac{\pi Z_C}{2 R_Q}} h f$$
 $Z_C = \sqrt{\frac{L}{C}}$

high Z modes more sensitive to TLS loss

Disordered superconductors are messy

BUT #2 Losses and decoherence for mesoscopic circuits (obs. InOx, NbN, TiN) see e.g. O. Astafiev's group

Width dependence of resonator properties

1/f noise PSD $\propto 1/w^2$

TiN

see e.g. J. Gao's talk

Is there a universality to it?

A new mechanism in superconductors!

arXiv:1810.12801

Change of scattering $\rightarrow \delta G_N$

optical analog: speckle pattern

A new mechanism in superconductors!

arXiv:1810.12801

Change of scattering $\rightarrow \delta G_N \rightarrow \delta L_K \rightarrow \delta f_0$ frequency noise

A new mechanism in superconductors!

arXiv:1810.12801

Change of scattering $\rightarrow \delta G_N \rightarrow \delta L_K \rightarrow \delta f_0$ frequency noise

mesoscopic fluctuations: $0 \le \delta G_N \le G_0$ relative fluctuations enhanced in the weak localization regime

+ apparent internal Q

$$\frac{\delta f_0}{f_0} \sim \alpha \, \frac{\delta G_N}{G_N} \quad \Rightarrow \quad Q_{TLS}^{-1} = \alpha \, \frac{\langle \delta G_N \rangle_{rms}}{G_N}$$

Nanowire (100 - 600nm) resonators 4-8GHz

Minimize TLS participation ratio (capacitive pads separated) DC Electric field to tune TLS energy ground plane and feedlines in Al

Time variation of resonance frequency

10

Sensitivity of resonator to DC electric field

fix signal frequency, sweep V

100nm NbSi, 32mK

same observations for all nano-resonators

V

average slope: ${}^{\delta f}/_{f} \sim 5.10^{-5} - 2.10^{-4} @ 1MV /m$

Kerr of Si ? Change in density of TLS ? (ionized traps)

Gate voltage dependence

80nm TiN, 32mK

measured up to ~1MHz in NbSi

δC versus δL_K

δC versus δL_K

δ*C* (« GTM ») δL_K (« UCF ») • $Q_{int}(T) \nearrow$ (saturation of TLS) $Q_{int}(T) \searrow$ (thermal activation of TLS) $f_0(T)$ non monotonous see eg Gustafsson Phys. Rev. B 88, 245410 **TiN nanowire 200nm** 3 $Q_{int} \times 10^4$ 2 1 0 400 0 200 600 Temperature (mK) similar structures on others NW also: $L_{phi}(T) \searrow \Rightarrow$ vanishing T dependence

δC versus δL_K

δ*C* (« GTM ») δL_K (« UCF ») (saturation of TLS) $Q_{int}(T) \searrow$ $Q_{int}(T)$ (thermal activation of TLS) Z $f_0(T)$ non monotonous see eg Gustafsson Phys. Rev. B 88, 245410 W nanowire 35nm see eg J. Basset arXiv:1811.06496 5000 Qi (d) Qc Qt 4000 MB + Qloss fix MB + Qloss lin 3000 100 µm Ø (c) 2000 2 µm 1000 - W SiO, n 1.5 0.5 1.0 2.0

T (K)

δC versus δL_K : On going work

On going work

We **propose a new** *dephasing* **mechanism in superconductors** *,* linking microscopic (electronic) to macroscopic (electromagnetic) coherence

- Origin of fluctuations from charged defects is evidenced
- resolve individual TLS coupled to nanowires transport

Important consequences

- Increased apparent RF losses on small size disordered superconductors
- may explain some puzzles of Disordered Superconductors (e.g. Larger fluctuations in narrow wires / thermal activation of internal losses)
- Sets a limit to the coherence of superconducting devices

Next

Detailed theory needed

• Method to determine L_{φ} in the superconducting state ?

Thank you!

Master	PhD	post-doc	co-Pl	NbSi synthesis	
Artis	Nicolas	Anil	Philippe	Laurent	Louis
Svilans ¹	Bourlet ¹	Murani ¹	Joyez ¹	Bergé ²	Dumoulin ²
				Deige	

helene.le-sueur@cea.fr

¹ Quantronics Group, Service de Physique de l'Etat Condensé, **CEA Saclay** ² Centre de Sciences Nucléaires et de Sciences de la Matière, **CNRS Orsay**

A new mechanism in superconductors!

arXiv:1810.12801

Cuevas, Levy-Yeyati, Averin, Urbina et al. Quantronics ...

A new mechanism in superconductors!

Change of scattering
$$\rightarrow \delta G_N \rightarrow \delta L_K \rightarrow \delta f_0$$

mesoscopic fluctuations:

$$0 \le \delta G_N \le G_0$$

$$\frac{\delta f_0}{f_0} \sim \alpha \, \frac{\delta G_N}{G_N} \quad \Rightarrow \quad Q_{TLS}^{-1} = \alpha \, \frac{\langle \delta G_N \rangle_{rms}}{G_N}$$

TLS dephase electrons: $L_{\varphi,TLS} = \sqrt{D \tau_{TLS}}$

($\tau_{TLS} > \hbar/\Delta$: superconductivity not affected - Anderson theorem)

wire longer than L_{ω} :

$$0 \le \delta G_N \le \left(\frac{L_{\varphi}}{L}\right)^2 G_0 \quad \Rightarrow \quad \boldsymbol{Q}_{TLS}^{-1} = \boldsymbol{\alpha} \left(\frac{L_{\varphi}}{L}\right)^{3/2} G_0 \frac{\boldsymbol{L}}{\boldsymbol{w}} R_{\blacksquare}$$

22

δC and δL_K phenomenologies

Is it Capacitance fluctuations?

no « GTM like » variation

Very weak « GTM like » variation