

18th International Workshop on Low Temperature Detectors

22-26 July 2019 - Milano, Italia

THE ROLE OF LOW TEMPERATURE DETECTORS IN NEUTRINO PHYSICS

Monica Sisti Università and INFN Milano-Bicocca

Neutrinos are...

Mysteries about Neutrinos

- Why are neutrinos so light?
- Are neutrinos their own anti-particles?
- Is there a fourth neutrino type?
- Are there non-standard interactions?

Current knowledge on neutrino properties

Neutrinos have mass and mix

From oscillation experiments:

Capozzi et al., Prog. Part. Nucl. Phys. 102 (2018) 48

$$\Delta m^2 = (\Delta m_{13}^2 + \Delta m_{23}^2)/2$$

Monica Sisti – LTD-18 – Milano, 23 July 2019

Neutrino masses

Neutrino mass observables

Tool	Measured quantity	Sensitivit present	ty (eV) future	
Cosmology (CMB only)	$m_{\Sigma} \equiv \sum m_{i}$	0.6	0.06	yes
Ov double beta decay	$m_{etaeta} \equiv \sum m_i U_{ei} ^2 e^{i lpha_i} $	0.1	0.01	yes
Beta decay	$m_{eta} \! \equiv \! (\sum m_{i}^{2} U_{ei} ^{2})^{1/2}$	2	0.2	no
$ \left(\right) $	- NO - IO 2 σ and 3 σ) i et al., Prog. Part. hys. 102 (2018) 48 	model de plementar rmations f xperiment observable	rity of from al	y _

Monica Sisti – LTD-18 – Milano, 23 July 2019

Neutrinos from Cosmology

Summed mass of active neutrinos have specific effects on Cosmic Microwave Background anysotropies and on Large Scale Structure formation

Double Beta Decay

second order weak decay of **even-even nuclei** in *A* even multiplets ⁴⁸Ca, ⁷⁶Ge, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te, ¹³⁶Xe ...

2 $\nu\beta\beta$: (*A*, *Z*) \rightarrow (*A*, *Z*+2) + 2 e^- + 2 $\overline{\nu}_e$ **allowed by the Standard Model observed with** $\tau_{1/2} > 10^{18}$ years

Neutrinoless Double Beta Decay

- The decay occurs only if neutrinos are Majorana particles
- The decay rate depends on the "effective Majorana mass"

 $\mathbf{0}_{\nu\beta\beta} \Leftrightarrow \frac{m_{\nu} \neq \mathbf{0}}{\nu \equiv \overline{\nu}}$

Neutrinoless Double Beta Decay

Neutrinoless Double Beta Decay

Ονββ experimental sensitivity

For bkg = 0:

$$S^{0\nu}(\tau_{1/2}) \propto \frac{\epsilon \eta}{A} M t_{meas}$$

Ονββ experimental sensitivity

$$S^{0\nu}(\tau_{1/2}) \propto \epsilon \cdot \frac{\eta}{A} \sqrt{\frac{M t_{meas}}{\Delta E \cdot bkg}} \qquad bkg \neq 0$$

$$\varepsilon \quad \text{detector efficiency} \quad \Delta E \quad \text{FWHM resolution} \\ \eta \quad 0\nu\beta\beta \text{ isotope abundance} \quad M \quad \text{total active mass} \\ \text{atomic mass} \quad t_{meas} \quad \text{measuring time} \\ \text{bkg background @ ROI in counts/keV/kg/y} \end{cases}$$

For bkg = 0:
$$S^{0\nu}(\tau_{1/2}) \propto \frac{\epsilon \eta}{A} M t_{meas}$$

2v rate in ROI

Isotope	$Q_{\beta\beta}$ [keV]	η [%]	$T_{1/2}^{2\nu}$ [y]	$R_{2\nu}(50 \mathrm{keV})$ [c/y/ton_iso]	$R_{0\nu}(m_{\beta\beta} = 50 \mathrm{meV})$ [c/y/ton_iso]	$R_{0\nu}(m_{\beta\beta} = 10 \text{ meV})$ [c/y/ton_iso]
⁴⁸ Ca	4274	0.2	4.4×10^{19}	4.0×10^{-2}	1.4–23.1	0.1–0.9
⁷⁶ Ge	2039	7.6	1.8×10^{21}	2.5×10^{-2}	1.2–12.2	0.05-0.5
⁸² Se	2996	8.7	9.2×10^{19}	6.8×10^{-2}	4.4–38.7	0.2–1.5
⁹⁶ Zr	3348	2.8	2.3×10^{19}	1.3×10^{-1}	3.9-50.7	0.2–2.0
¹⁰⁰ Mo	3034	9.6	7.1×10^{18}	6.8×10^{-1}	8.9–71.3	0.4–2.9
¹¹⁶ Cd	2814	7.5	2.8×10^{19}	2.1×10^{-1}	6.8–23.8	0.3-1.0
¹³⁰ Te	2528	34.2	6.8×10^{20}	1.3×10^{-2}	3.6-24.9	0.1-1.0
¹³⁶ Xe	2458	8.9	2.1×10^{21}	4.8×10^{-3}	2.5-14.0	0.1–0.6
¹⁵⁰ Nd	3368	5.6	8.2×10^{18}	2.3×10^{-1}	9.1-42.7	0.4–1.7

Ονββ detection techniques "MUSTs"

- Negligible radioactive background
- Large detector mass
- High energy resolution
- ✓ Favorable 0vββ candidate (high Q_{BB} , large R_{0v}/R_{2v} in the ROI)

Monica Sisti – LTD-18 – Milano, 23 July 2019

LTDs for $0\nu\beta\beta$ searches

Example of double read-out (phonons + scintillation photons)

Most common thermometer technologies:

- Neutron Transmutation Doped Ge (NTD)
- Transition Edge Sensors (TES)
- Metallic Magnetic Calorimeters (MMC)
- Microwave Kinetic Inductance Det (MKIDs)

- excellent energy resolution
- ✓ true calorimeters
- ✓ wide material choice
- ✓ low threshold
- ✓ high efficiency
- ✓ large masses
- ✓ radiopure absorbers
- ✓ fully sensitive to recoils
- ✓ segmentation to reduce background
- double-readout detectors with particle identification capabilities (i.e. e/γ - recoil, e/γ - α)
- x slow time responses
- x fully sensitive to surface radioactivity
- *x* difficult to reduce close materials (holders, wires, cryostats,...)
- x not easy to run stable

The CUORE TeO₂ thermal detectors

<u>Cryogenic</u> <u>Underground</u> <u>Observatory</u> for <u>Rare</u> <u>Events</u>

TeO₂ absorbers + Ge-NTD thermistors:

T ~ 10 mK $\Delta T/\Delta E ~ 0.1$ mK/MeV $\Delta V/\Delta E ~ 0.3$ mV/MeV $\tau = C/G ~ 1$ s C ~ 2×10⁻⁹ J/K FWHM ~ 0.2 %

¹³⁰Te as $\beta\beta0\nu$ candidate

* high natural isotopic abundance: 34.2 %
* transition energy: Q = 2527.52 keV

TeO₂ Absorbers

- low specific heat
- large crystals available
- radiopure

Ge-NTD thermistors

- high dynamic range
- ✓ high linearity
- x microphonic
- × slow

Monica Sisti - LTD-18 - Milano, 23 July 2019

The CUORE TeO, thermal detectors

<u>Cryogenic</u> <u>Underground</u> <u>Observatory</u> for <u>Rare</u> <u>Events</u> ////// Thermal coupling TeO, absorbers + (AU wires and PTFE supports) **Ge-NTD thermistors:** T ~ 10 mK $\Lambda T/\Lambda E \sim 0.1 \text{ mK/MeV}$ $\Delta V/\Delta F \sim 0.3 \text{ mV/MeV}$ Thermistor (Ge-NTD) $\tau = C/G \sim 1 s$ Heat sink ~10mK (Cu frames $C \sim 2 \times 10^{-9} \text{ J/K}$ Absorber (TeO₂ crystal) FWHM ~ 0.2 % Si heater **High energy resolution**

Radiopurity of close materials

→ strict control of the contamination content of Cu, PTFE, Ge-NTDs, Si heaters, PEN wires and TeO₂ crystals themselves

TeO₂ arrays evolution (mass scalability)

CUORE is the latest evolution of a long series of TeO₂ detector arrays

19

CUORE first results

CUORE first results

CUORE **U**pgrade with **P**article **ID**entification

CUPID (background abatement)

CUORE **U**pgrade with **P**article **ID**entification

Nucleus	A.I.	Q-value	Good materials
	[%]	[keV]	
⁷⁶ Ge	7.8	2039	Ge
¹³⁰ Te	33.8	2527	TeO2
^{116}Cd	7.5	2802	CdWO4 CdMoO4
⁸² Se	9.2	2995	ZnSe
¹⁰⁰ Mo	9.6	3034	PbMoO4 CaMoO4 SrMoO4 CdMoO4 ZnMoO4 Li2MoO4 MgMoO4
⁹⁶ Zr	2.8	3350	ZrO2
¹⁵⁰ Nd	5.6	3367	NONE
⁴⁸ Ca	0.187	4270	CaF2 CaMoO4

CUPID-0: the first array of scintillating LTDs for ⁸²Se 0vββ search

Zn⁸²Se (95% enrich)

- NTD thermistor (phonons)
- Ge-wafer + NTD (light)

ROI bkg: 3.5 × 10⁻³ c/keV/kg/y best ever achieved with LTDs

Monica Sisti – LTD-18 – Milano, 23 July 2019

CUPID-Mo: 20 Li₂¹⁰⁰MoO₄ (96% enrich) operated in EDELWEISS setup

- NTD thermistor as phonon sensor
- Ge-wafer with SiO coating + NTD as light detector

<u>C</u>UORE <u>Upgrade</u> with <u>Particle</u> <u>ID</u>entification

Goal: explore the entire inverted ordering neutrino mass region down to 10 meV Strategy: merge the CUORE cryogenic infrastracture with CUPID particle ID Option for multiple isotopes with the same technique

Active background rejection to reach almost zero-background condition Expected BI 10⁻⁴ counts/keV/kg/y in the ROI

Baseline: Li₂¹⁰⁰MoO₄ scintillating absorbers (1500 crystals for 250 kg of ¹⁰⁰Mo) NTD-Ge phonon sensors Ge wafer + NTD-Ge light detector

TDR and construction readiness in 2021

CUPID CDR available soon

CUPID: the future

CUPID: the future

AMoRE

Advanced Mo-based Rare process Experiment

⁴⁰Ca¹⁰⁰MoO₄ ~ 5 kg <u>AMoRE-I</u>

X¹⁰⁰MoO₄ 200 kg

AMoRE-II

ckky : counts/ (keV kg year)

	AMoRE-Pilot	AMoRE-I	AMoRE-II
Crystal Mass (kg)	1.5	5	200
Backgrounds(ckky)	$\sim 10^{-2}$	~ 10 ⁻³	10-4
$T_{1/2}$ (year)	1.0×10^{24}	8.2x10 ²⁴	8.2x10 ²⁶
m _{bb} (meV)	380-719	130-250	13-25
Schedule	2017	2018	2020-2023

- MMC as phonon sensor
- Ge-wafer + MMC as light detector

Advanced Mo-based Rare process Experiment

Monica Sisti – LTD-18 – Milano, 23 July 2019

Ονββ searches: outlook

Monica Sisti - LTD-18 - Milano, 23 July 2019

Direct neutrino mass measurement

Direct neutrino mass measurement with LTDs

Calorimeters: source ⊆ detector

β calorimeter

ideally measures all the energy *E* released in the decay except for the v_e energy: $E = E_0 - E_v$

Calorimeters measure the entire spectrum at once use low $E_0 \beta$ decaying isotopes to achieve enough statistics close to E_0 e.g. ¹⁸⁷Re: $E_0 = 2.47 \text{ keV} \Rightarrow F(\delta E=10 \text{ eV}) \approx (\delta E/E_0)^3 = 7 \times 10^{-8}$

Drawback:

Pile-up

time unresolved superposition of β decays for a source activity A_{β} , a time resolution τ_{R} and an energy resolution function $R(E_{\beta})$ $N^{exp}(E_{\beta}) \approx (N(E_{\beta}) + \tau_{R}A_{\beta} \cdot N(E_{\beta}) \otimes N(E_{\beta})) \otimes R(E_{\beta})$

Precursor ¹⁸⁷Re experiments

Monica Sisti – LTD-18 – Milano, 23 July 2019

MS et al., Nucl. Instr. Meth. A 520 (2004) 125 34

Precursor ¹⁸⁷Re experiments

Monica Sisti – LTD-18 – Milano, 23 July 2019

MS et al., Nucl. Instr. Meth. A 520 (2004) 125

35

Electron capture calorimetric experiments

¹⁶³Ho + $e^- \rightarrow {}^{163}$ Dy* + ν_e

electron capture from shell ≥ M1

A. De Rújula and M. Lusignoli, Phys. Lett. B 118 (1982) 429

Springler et al., Phys. Rev. A 35 (1987) 679

Atomic de-excitation:

- X-ray emission
- Auger electrons
- Coster-Kronig transitions

calorimetric measurement of Dy atomic de-excitations

- Q = 2.83 keV (determined with Penning trap in 2015)
 - end-point rate and v mass sensitivity depend on $Q E_{M1}$
- $\tau_{\frac{1}{2}} \approx 4570$ years $\rightarrow 2 \times 10^{11}$ ¹⁶³Ho nuclei $\leftrightarrow 1Bq$

Effect of the neutrino mass at the end-point of the de-excitation spectrum

Pulse pile-up effect

- calorimetric measurement ↔ detector speed is critical
- accidental coincidences \rightarrow complex pile-up spectrum

Monica Sisti – LTD-18 – Milano, 23 July 2019

For a statistical sensitivity on m_{u} of ~1 eV

- ✓ High statistics at the end-point region: $N_{ev} > 10^{13}$
- ✓ Unresolved pile-up fraction $f_{pp} < ~ 10^{-4}$
- ✓ High energy resolution ΔE_{FWHM} < 3 eV
- Low background level ~ 10⁻⁴ c/eV/det/day

For a statistical sensitivity on m_{u} of ~1 eV

- ✓ High statistics at the end-point region: $N_{ev} > 10^{13}$
- ✓ Unresolved pile-up fraction $f_{pp} < ~ 10^{-4}$
- ✓ High energy resolution ΔE_{FWHM} < 3 eV
- Low background level ~ 10⁻⁴ c/eV/det/day

Challenges:

¹⁶³Ho production

¹⁶²Er (n,
$$\gamma$$
) ¹⁶³Er $\sigma_{\text{thermal}} \approx 20b$
¹⁶³Er \rightarrow ¹⁶³Ho + ν_{e} $\tau_{\frac{1}{1/2}}^{EC} \approx 75min$

neutron activation

For a statistical sensitivity on m_v of ~1 eV

- ✓ High statistics at the end-point region: $N_{ev} > 10^{13}$
- ✓ Unresolved pile-up fraction $f_{pp} < ~ 10^{-4}$
- ✓ High energy resolution ΔE_{FWHM} < 3 eV
- ✓ Low background level ~ 10⁻⁴ c/eV/det/day

- ¹⁶³Ho production
- Detector technology (ECHo, HOLMES)

For a statistical sensitivity on m_v of ~1 eV

- ✓ High statistics at the end-point region: $N_{ev} > 10^{13}$
- ✓ Unresolved pile-up fraction $f_{pp} < ~ 10^{-4}$
- ✓ High energy resolution ΔE_{FWHM} < 3 eV
- ✓ Low background level ~ 10⁻⁴ c/eV/det/day

- ¹⁶³Ho production
- Detector technology (ECHo, HOLMES)
- Construction of high performing detector arrays

For a statistical sensitivity on m_v of ~1 eV

- ✓ High statistics at the end-point region: $N_{ev} > 10^{13}$
- ✓ Unresolved pile-up fraction $f_{pp} < ~ 10^{-4}$
- ✓ High energy resolution ΔE_{FWHM} < 3 eV
- ✓ Low background level ~ 10⁻⁴ c/eV/det/day

- ¹⁶³Ho production
- Detector technology (ECHo, HOLMES)
- Construction of high performing detector arrays
- ¹⁶³Ho embedment in the detectors

For a statistical sensitivity on m_v of ~1 eV

- ✓ High statistics at the end-point region: $N_{ev} > 10^{13}$
- ✓ Unresolved pile-up fraction $f_{pp} < ~ 10^{-4}$
- ✓ High energy resolution ΔE_{FWHM} < 3 eV
- ✓ Low background level ~ 10⁻⁴ c/eV/det/day

- ¹⁶³Ho production
- Detector technology (ECHo, HOLMES)
- Construction of high performing detector arrays
- ¹⁶³Ho embedment in the detectors
- Stable measurement in a low background environment

For a statistical sensitivity on m_v of ~1 eV

- ✓ High statistics at the end-point region: $N_{ev} > 10^{13}$
- ✓ Unresolved pile-up fraction $f_{pp} < ~ 10^{-4}$
- ✓ High energy resolution ΔE_{FWHM} < 3 eV
- ✓ Low background level ~ 10⁻⁴ c/eV/det/day

Challenges:

- ¹⁶³Ho production
- Detector technology (ECHo, HOLMES)
- Construction of high performing detector arrays
- ¹⁶³Ho embedment in the detectors
- Stable measurement in a low background environment
- Theoretical shape of the ¹⁶³Ho spectrum

Faessler et al., Phys. Rev. C 91 (2015) 045505 De Rujula et al., JHEP 05 (2016) 015 Brass et al., Phys. Rev. C 97 (2015) 054620

Detector technology

Monica Sisti – LTD-18 – Milano, 23 July 2019

46

MES

ECHo

Expected sensitivity of ¹⁶³Ho m_v experiments

... to be compared with KATRIN

current upper limit on anti-neutrino mass from spectometer experiments: 2.2 eV

KATRIN overview: 70 m long beamline

Monica Sisti - LTD-18 - Milano, 23 July 2019

Oscillation experiments have entered the precision era

Oscillation experiments have entered the precision era

Future goals are:

• Establishing the robustness of the three-flavor oscillations with respect to new physics beyond the Standard Model

 $N_{\beta}(E,m_L,m_H,\theta) = \cos^2 \theta N_{\beta}(E,m_L) + \sin^2 \theta N_{\beta}(E,m_H)$

Oscillation experiments have entered the precision era

Future goals are:

- Establishing the robustness of the three-flavor oscillations with respect to new physics beyond the Standard Model
- Determination of the CP-violating phase and the neutrino mass ordering

Oscillation experiments have entered the precision era

Future goals are:

- Establishing the robustness of the three-flavor oscillations with respect to new physics beyond the Standard Model
- Determination of the CP-violating phase and the neutrino mass ordering

Oscillation experiments have entered the precision era

Future goals are:

- Establishing the robustness of the three-flavor oscillations with respect to new physics beyond the Standard Model
- Determination of the CP-violating phase and the neutrino mass ordering

Additional interactions beyond the SM ones affecting the neutrino sector – Non Standard Interactions (NIS) – may have severe consequences on future experiments.

Pilar et al., Phys. Rev. D 94 (2016) 055005

Scattering experiments are important to constrain this scenario

Coherent elastic v-nucleus scattering (CEvNS)

nuclear recoils

Coherent elastic v-nucleus scattering (CEvNS)

Monica Sisti - LTD-18 - Milano, 23 July 2019

CevNS with LTDs

Goal: study neutrino physics at low energy with high precision

Monica Sisti - LTD-18 - Milano, 23 July 2019

NU-CLEUS detector prototype: 0.5 g Al₂O₃ detector

NU-CLEUS 1g demonstrator

- Sapphire and CaWO₄ crystals
- Flexible Si wafers as inner veto detectors

Monica Sisti – LTD-18 – Milano, 23 July 2019

NU-CLEUS detector prototype: 0.5 g Al₂O₃ detector

NU-CLEUS 1g demonstrator

- Sapphire and CaWO₄ crystals
- Flexible Si wafers as inner veto detectors

RICOCHET

Proposal paper: "The first low-energy kg-scale CEvNS neutrino observatory combining multi-target and multi-technology cryogenic detectors", J. Billard et al., J. Phys. G (2017) [arXiv: 1612.09035]

Monica Sisti - LTD-18 - Milano, 23 July 2019

RICOCHET

Proposal paper: "The first low-energy kg-scale CEvNS neutrino observatory combining multi-target and multi-technology cryogenic detectors", J. Billard et al., J. Phys. G (2017) [arXiv: 1612.09035]

Monica Sisti – LTD-18 – Milano, 23 July 2019

Other ongoing detector developments:

BULLKID I. Colantoni, poster ID 290

Low Temperature Detectors have become mature devices with strong potentialities in neutrino physics experiments.

Ongoing R&Ds will surely confirm the leading role of this technique also for next generation experiments!

