DIPARTIMENTO
INTERATENEO DI FISICA
“M. MERLIN"

INFN

Istituto Nazionale di Fisica Nucleare

Continuous and Pulsed Quantum Control

Giovanni GRAMEGNA

Joint work with: P. FACCHI, S. PASCAzIO and D. BURGARTH

INFORMATION GEOMETRY, QUANTUM MECHANICS AND APPLICATIONS

26 June 2018 POLICETA - SAN RUFO (SALERNO)



@ Two techniques to control the evolution of a quantum system

@ Strong Continuous Coupling
e Bang-bang evolution

@ Comparing the two paradigms
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Strong continuous coupling

2 finite dimensional Hilbert space.

Continuous H be the Hamiltonian of the SyStem Control potentia|
couping Continuous coupling:
Hx = H+ KV V=2 APy
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Evolution operator: Uk(t) = o t(H+KV)

Zeno Hamiltonian:

Strong Continuous Coupling (K — )

) . H
Unt) = oo+ 0 1)

w )



Continuous
Coupling

Strong continuous coupling

2 finite dimensional Hilbert space.

H be the Hamiltonian of the system
Continuous coupling:

Hx =H+ KV

Evolution operator: Uk(t) = o t(H+KV)

Strong Continuous Coupling (K — )

UK(t) — e—iKVre—int 4 O (1?)

Control potential

V=> AP,
I

The total Hilbert space is partitioned
into superselection sectors:

H =P Ar,, o, =PuAH
o

Zeno Hamiltonian:

)
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A brief detour: the Adiabatic Theorem

Time-dependent Schrédinger equation:
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Continuous
Coupling

A brief detour: the Adiabatic Theorem

Time-dependent Schrédinger equation:

au
{/dt — HU(),
Uo) =1

te[0,T]

What happens when the variation of H(t) is

made VERY slow? ! \//

Introducing the rescaled time s = t/T € [0, 1]:

Rescaled Schrddinger equation

,aUr

— TH(S)UT(S), UT(S) EU(ST)

Instantaneous eigenprojection:
H(s)P(s) = A(s)P(s)
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Continuous
Coupling

A brief detour: the Adiabatic Theorem

Time-dependent Schrédinger equation:

au
{/dt — HU(),
Uo) =1

te[0,T]

What happens when the variation of H(t) is

made VERY slow? | \// t

Introducing the rescaled time s = t/T € [0, 1]:

Rescaled Schrédinger equation

,aUr

— TH(S)UT(S), UT(S) EM(ST)

Instantaneous eigenprojection:
H(s)P(s) = A(s)P(s)
Assumptions:
@ )\(s) continuous;

@ P(s) € C%([0,1]) Intertwining property: P(s)U(s) = U(s)P(0)




The strong coupling limit: a sketch of the proof
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The strong coupling limit: a sketch of the proof

The evolution Uk (t) generated by the continuous coupling satisfies the equation:

dUK
Continuous d (H + KV) UK(t)
Couplin . .
o Going to the interaction picture: Ul (t) = e Uk (1), V(1) = e Ve
Interaction Picture Rescaled Schrédinger equation
dul du
=K = KVI(O)Uj(0) i~ = TH(s)Ur(s)

st To K Hs) e V) P(s) e Put)

Adiabatic limit in interaction picture (K — oo)
Vl(t) = Zu ApPu(t)
v Ay, constant

v Pu(t)=eMp,e
analytic

Intertwining property: P, (t)U(t) = U(t)P,.
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The strong coupling limit: a sketch of the proof

The evolution Uk (t) generated by the continuous coupling satisfies the equation:

dUK
Continuous d (H + KV) UK(t)
Couplin . .
o Going to the interaction picture: Ul (t) = e Uk (1), V(1) = e Ve
Interaction Picture Rescaled Schrédinger equation
dul du
=K = KVI(O)Uj(0) i~ = TH(s)Ur(s)

st To K Hs) e V) P(s) e Put)

Adiabatic limit in interaction picture (K — oo)
Vl(t) = Zu ApPu(t)
v Ay, constant

v Pu(t)=eMp,e
analytic

Intertwining property: P, (t)U(t) = U(t)P,.

Going back to the Schrodinger picture we obtain the result
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Example: four level system

Continuous |1 >
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Example: four level system

Continuous |1 >
Coupling Q N
i 0 Qp 0 0 ‘ZO :

0 Qn |0 0 Zeno subspaces
Hy — Q2 O 0 0
Z= 0 0 0 Qaq %1 :Span{|1>7|2>}
0 0 Qu 0 Hp, = Span{[3) + |4)}

Hp_ = Span{|3) — |4)}




Example: transition probabilities

; 2
Continuous P1 *,](t) = ‘<." e*I(H‘FKV)[ ’ 1>‘

Coupling

e K=0
)
o
2)
a( )
3)
o )
4)
0 Q 0 O
H— Q 0 Q 0 0 1 2 o 3 4 s
0 Q 0 Q
0 0 Q0



Example: transition probabilities

. 2 f ——
O P (1) = |(j] e | 1) NN E
Coupling 06 /
o K = 1009 )
02 \
N —— W=
QO '//P1 [
2) — 1 —]
—P2
0.8 P3
13) ——P4
Q‘ E‘K 0.6
14) P
04
0Q 0 0 02
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Dynamical decoupling

Pulsed evolution:
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Bang-Bang
control

Pulsed evolution:
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0O——>——----- - - - - —-- ——>
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Idea behind the method: suppose that U7, = I for some m € N
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Bang-Bang
control

Dynamical decoupling

Pulsed evolution:

Ukiek  Ukick Ukiek  Ukick
—_—,—— - m - — - - - - = ——
it it t
e—lﬁH e—rﬁH e—/ﬁH
1 2 n

Idea behind the method: suppose that U7, = I for some m € N

Then, for n = km:

Un(t) = (Ukickeif%h’) (Ukickeii%H> (Ukickeii%H>

ntimes
gy tn—1 _—itH n—1 i oa—itH,  —ilH
= UdaUic € " Ui - Uga® 7 Uiake™ 7
) ) ot
R N L PR L

£ 0
He = Ulirick HUgex

An “effective” average is taking place:

o 1 n—1 1 n—1
A= He= "> UlgHUge = =d PuHPy =Hz  (n=km)
=0 £=0 o

[Hz, U] = 0, only the diagonal part survives the limit while the off-diagonal part
Hoqg = H — Hz (satisfying [Hog, Ukick] # 0) is averaged to zero.
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Trotter product formula

A and B operators on some finite dimensional Hilbert space J#.

Bang-Bang [A, B] 75 0 — eA+B 75 eAeB

control

“Remedy”:

Trotter product formula %n large but finite:

n 1
B = limp_, oo (eA/neB/,,)” | eMB — (eA/neB/n> +0 (E)
This still works with the sum of a finite number of operators Ai, ..., An:
At Am _ (eA1/neA2/n' - eAm/n>n L0 (1)
n

We cannot go further if we want to retain this rate of convergence.
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Dynamical decoupling

Pulsed evolution:
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Bang-Bang
control

Dynamical decoupling

For a finite number of operators A1, Ag, ..., Am:

(eA1/"eA2/" .. eAm/">n = Mt FAm L O (1) Ukiek = Zu e~ P
n

Idea behind the method: suppose that U7, = I for some m € N
Then, for n = km:
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ntimes

_ gy ggtn=1 —itH,; n=1 + —ilH —ilH
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it it
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=e -e

a 14
He = Ul HU

An “effective” average is taking place:
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Bang-Bang
control

Dynamical decoupling

For a finite number of operators Aq, Ao, ..., Am:

(eA1/neA2/n o e,qm/,,)n _MttAn L 0 (%) Uik = 32, €0 Py

Idea behind the method: suppose that U, = I for some m € N
Then, for n = km:

. ) ) K
Un(t) = [ (Ukick97'%H> (Ukick67'%H> (Ukick67'%H> ]

mtimes

K
. it t t
_ m im—1_—i~H,mn—1 T —isH —itH
= |:Ukick Ui € " 0gac - Ugac® 7 Uik 0

k _
¢ ¢ ¢ . 1
_ [e—/mHm71 . e—/WH1 e—lmHo] — e—/[H + O (E)

_yyte 0
He = Ukick HUgex

An “effective” average is taking place:

Hy, =

3=

m—1

£
Z UlirickHUIfick == Z PHHPH =Hz
£=0 "

[Hz, Uick] = 0O, only the diagonal part survives the limit while the off-diagonal part
Hog = H — Hz (satisfying [Hog, Ukick] # 0) is averaged to zero.



Bang-bang control

Pulsed evolution:

Uik Ukick Uiiek  Ukick
—_——,——— — — mm - - - -~ —— [
. . Lt
Bang-Bang —itH —itH —i-H
control e n-e n e n
1 2 n

Evolution operator:

Un(t) = (Ukickeii'%H) "

Very frequent kicks: n — oo

7 n » 1
(L"kicke_lHt/n) —Ulne Mt =0 (77)

Hz = P.HP,

o
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Bang-Bang
control

Example: bang-bang control

0
_ | 2
H=1 "o
0
1 0
0o 1
Ukick = 0 0
0 0
1)
Q2
2)

, n=0
Q4o 0 0
0 Qu O 08
Qo3 0 Qaq 0.6
0 Q34 0 P
04
0 0
0 0 0.2
cos(A)  —isin(\) 0
—isin(A\)  cos(A) 0
n=20
! —P1
—P2
0.8 P3
—P4
0.6
P
0.4
¥ ——<—=-
Lo 02
—————————
|4> 0 PAD. N AIN T A
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Comparison

Continuous Coupling Pulsed evolution
Uk(t) = e~ KV+H) Un(t) = (e—/tve_/gH)"
Comparison < )
?
I .
1+

Both evolutions yield a dynamics
generated by

Hz = P.HP,

o

% ‘\ [1(to))
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Thank you for your attention.
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