Continuous Coupling Bang-Bang control

Continuous and Pulsed Quantum Control

Giovanni GRAMEGNA

Joint work with: P. FACCHI, S. PASCAZIO and D. BURGARTH

INFORMATION GEOMETRY, QUANTUM MECHANICS AND APPLICATIONS

26 June 2018 POLICETA - SAN RUFO (SALERNO)

Outline

Continuous Coupling

CONTROL

- Two techniques to control the evolution of a quantum system
 - Strong Continuous Coupling
 - Bang-bang evolution
- Comparing the two paradigms

 ${\mathscr H}$ finite dimensional Hilbert space.

H be the Hamiltonian of the system

Continuous Coupling

 ${\mathscr H}$ finite dimensional Hilbert space.

H be the Hamiltonian of the system Continuous coupling:

Continuous Coupling

$$H_K = H + KV$$

Evolution operator: $U_K(t) = e^{-it(H+KV)}$

Control potential

$$V = \sum_{\mu} \lambda_{\mu} P_{\mu}$$

 ${\mathscr H}$ finite dimensional Hilbert space.

H be the Hamiltonian of the system Continuous coupling:

Continuous Coupling

$$H_K = H + KV$$

Evolution operator: $U_K(t) = e^{-it(H+KV)}$

Strong Continuous Coupling $(K \to \infty)$

Control potential

$$V = \sum_{\mu} \lambda_{\mu} P_{\mu}$$

 ${\mathscr H}$ finite dimensional Hilbert space.

H be the Hamiltonian of the system Continuous coupling:

Continuous

Coupling

$$H_K = H + KV$$

Evolution operator: $U_K(t) = e^{-it(H+KV)}$

Strong Continuous Coupling $(K \to \infty)$

$$U_{K}(t) = e^{-iKVt}e^{-iH_{Z}t} + O\left(\frac{1}{K}\right)$$

Control potential

$$V = \sum_{\mu} \lambda_{\mu} P_{\mu}$$

Zeno Hamiltonian:

$$H_Z = \sum_{\mu} P_{\mu} H P_{\mu}$$

 ${\mathscr H}$ finite dimensional Hilbert space.

H be the Hamiltonian of the system Continuous coupling:

Continuous

Coupling

$$H_K = H + KV$$

Evolution operator: $U_K(t) = e^{-it(H+KV)}$

Strong Continuous Coupling $(K \to \infty)$

$$U_{K}(t) = e^{-iKVt}e^{-iH_{Z}t} + O\left(\frac{1}{K}\right)$$

The total Hilbert space is partitioned into superselection sectors:

$$\mathscr{H} = \bigoplus_{\mu} \mathscr{H}_{P_{\mu}}, \quad \mathscr{H}_{P_{\mu}} = P_{\mu} \mathscr{H}$$

Control potential

$$V = \sum_{\mu} \lambda_{\mu} P_{\mu}$$

Zeno Hamiltonian:

$$H_Z = \sum_{\mu} P_{\mu} H P_{\mu}$$

Time-dependent Schrödinger equation:

$$\begin{cases} i\frac{d\mathcal{U}}{dt} = \mathcal{H}(t)\mathcal{U}(t), \\ \mathcal{U}(0) = \mathbb{I} \end{cases} t \in [0, T]$$

Compariso

Continuous Coupling

Time-dependent Schrödinger equation:

Continuous Coupling

$$\begin{cases} i \frac{d\mathcal{U}}{dt} = \mathcal{H}(t)\mathcal{U}(t), \\ \mathcal{U}(0) = \mathbb{I} \end{cases} t \in [0, T]$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Time-dependent Schrödinger equation:

Continuous Coupling

$$\begin{cases} i\frac{d\mathcal{U}}{dt} = \mathcal{H}(t)\mathcal{U}(t), \\ \mathcal{U}(0) = \mathbb{I} \end{cases} \quad t \in [0, T]$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Introducing the rescaled time $s = t/T \in [0, 1]$:

Time-dependent Schrödinger equation:

Continuous Coupling

$$\begin{cases} i \frac{d\mathcal{U}}{dt} = \mathcal{H}(t)\mathcal{U}(t), \\ \mathcal{U}(0) = \mathbb{I} \end{cases} t \in [0, T]$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Introducing the rescaled time $s = t/T \in [0, 1]$:

Rescaled Schrödinger equation

$$i\frac{dU_T}{ds} = TH(s)U_T(s), \quad U_T(0) = 1$$

Where:

$$H(s) \equiv \mathcal{H}(sT)$$

 $U_T(s) \equiv \mathcal{U}(sT)$

Time-dependent Schrödinger equation:

Continuous Couplina

$$\begin{cases} i\frac{d\mathcal{U}}{dt} = \mathcal{H}(t)\mathcal{U}(t), \\ \mathcal{U}(0) = \mathbb{I} \end{cases} \quad t \in [0, T]$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Introducing the rescaled time $s = t/T \in [0, 1]$:

Rescaled Schrödinger equation

$$i\frac{dU_T}{ds} = TH(s)U_T(s), \quad U_T(0) = 1$$

 $\lambda_{2}(t/T)$ $\lambda_{1}(t/T)$ $\lambda_{1}(t/T)$ $\lambda_{1}(t/T)$ $\lambda_{2}(t/T)$

Where:

$$H(s) \equiv \mathcal{H}(sT)$$

$$U_T(s) \equiv \mathcal{U}(sT)$$

Instantaneous eigenprojection:

$$H(s)P(s) = \lambda(s)P(s)$$

Continuous Couplina

control

Time-dependent Schrödinger equation:

$$\begin{cases} i \frac{d\mathcal{U}}{dt} = \mathcal{H}(t)\mathcal{U}(t), \\ \mathcal{U}(0) = \mathbb{I} \end{cases} \quad t \in [0, T]$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Introducing the rescaled time $s = t/T \in [0, 1]$:

Rescaled Schrödinger equation

$$i\frac{dU_T}{ds} = TH(s)U_T(s), \quad U_T(0) = 1$$

Where:

$$H(s) \equiv \mathcal{H}(sT)$$

 $U_T(s) \equiv \mathcal{U}(sT)$

Instantaneous eigenprojection:

$$H(s)P(s) = \lambda(s)P(s)$$

Assumptions:

- λ(s) continuous;
- $P(s) \in C^2([0,1])$

Continuous Couplina

control

Time-dependent Schrödinger equation:

$$\begin{cases} i \frac{d\mathcal{U}}{dt} = \mathcal{H}(t)\mathcal{U}(t), \\ \mathcal{U}(0) = \mathbb{I} \end{cases} \quad t \in [0, T]$$

What happens when the variation of $\mathcal{H}(t)$ is made VERY slow?

Introducing the rescaled time $s=t/T\in[0,1]$:

Rescaled Schrödinger equation

$$i\frac{dU_T}{ds} = TH(s)U_T(s), \quad U_T(0) = 1$$

Where:

$$H(s) \equiv \mathcal{H}(sT)$$

 $U_T(s) \equiv \mathcal{U}(sT)$

Instantaneous eigenprojection:

$$H(s)P(s) = \lambda(s)P(s)$$

Assumptions:

- λ(s) continuous;
- $P(s) \in C^2([0,1])$

Adiabatic limit $(T \to \infty)$

$$U_T(s)P(0) = e^{-iT\int_0^s \lambda(\sigma)\,\mathrm{d}\sigma}U(s)P(0) + O\left(\frac{1}{T}\right)$$

Intertwining property: P(s)U(s) = U(s)P(0)

The evolution $U_K(t)$ generated by the continuous coupling satisfies the equation:

$$i\frac{dU_K}{dt}=(H+KV)U_K(t)$$

Continuous Coupling Bang-Bang

Compariso

The evolution $U_K(t)$ generated by the continuous coupling satisfies the equation:

$$i\frac{dU_K}{dt}=(H+KV)U_K(t)$$

Going to the interaction picture: $U_K^I(t) = e^{itH}U_K(t)$, $V^I(t) = e^{itH}Ve^{-itH}$

Interaction Picture

Continuous Coupling

$$i\frac{dU_K^I}{dt} = KV^I(t)U_K^I(t)$$

The evolution $U_K(t)$ generated by the continuous coupling satisfies the equation:

$$i\frac{dU_K}{dt}=(H+KV)U_K(t)$$

Going to the interaction picture: $U_K^I(t) = e^{itH}U_K(t)$, $V^I(t) = e^{itH}Ve^{-itH}$

Interaction Picture

Continuous Coupling

$$i\frac{dU_K^I}{dt} = KV^I(t)U_K^I(t)$$

Rescaled Schrödinger equation

$$i\frac{dU_T}{ds} = TH(s)U_T(s)$$

$$s \leftrightarrow t$$
 $T \leftrightarrow K$ $H(s) \leftrightarrow V^{I}(t)$ $P(s) \leftrightarrow P_{\mu}(t)$

The evolution $U_K(t)$ generated by the continuous coupling satisfies the equation:

$$i\frac{dU_K}{dt}=(H+KV)U_K(t)$$

Going to the interaction picture: $U_K^I(t) = e^{itH}U_K(t)$, $V^I(t) = e^{itH}Ve^{-itH}$

Interaction Picture

Continuous Couplina

$$i\frac{dU_K^I}{dt} = KV^I(t)U_K^I(t)$$

Rescaled Schrödinger equation

$$i\frac{dU_T}{ds} = TH(s)U_T(s)$$

$$s \leftrightarrow t$$
 $T \leftrightarrow K$ $H(s) \leftrightarrow V^{I}(t)$ $P(s) \leftrightarrow P_{\mu}(t)$

$$V^{I}(t) = \sum_{\mu} \lambda_{\mu} P_{\mu}(t)$$

- \checkmark λ_{μ} constant
- $\checkmark P_{\mu}(t) = e^{itH}P_{\mu}e^{-itH}$ analytic

The evolution $U_K(t)$ generated by the continuous coupling satisfies the equation:

$$i\frac{dU_K}{dt}=(H+KV)U_K(t)$$

Going to the interaction picture: $U_K^I(t) = e^{itH}U_K(t)$, $V^I(t) = e^{itH}Ve^{-itH}$

Interaction Picture

Continuous Couplina

$$i\frac{dU_K^I}{dt} = KV^I(t)U_K^I(t)$$

Rescaled Schrödinger equation

$$i\frac{dU_T}{ds} = TH(s)U_T(s)$$

$$s \leftrightarrow t$$
 $T \leftrightarrow K$ $H(s) \leftrightarrow V^{I}(t)$ $P(s) \leftrightarrow P_{\mu}(t)$

$$V'(t) = \sum_{\mu} \lambda_{\mu} P_{\mu}(t)$$

 \checkmark λ_{μ} constant

$$\checkmark P_{\mu}(t) = e^{itH}P_{\mu}e^{-itH}$$
 analytic

Adiabatic limit in interaction picture $(K \to \infty)$

$$U_K^I(t)P_\mu = \mathrm{e}^{-iK\lambda_\mu t}U(t)P_\mu + O\left(rac{1}{K}
ight)$$

Intertwining property: $P_{\mu}(t)U(t) = U(t)P_{\mu}$

The evolution $U_K(t)$ generated by the continuous coupling satisfies the equation:

$$i\frac{dU_K}{dt}=(H+KV)U_K(t)$$

Going to the interaction picture: $U_K^I(t) = e^{itH}U_K(t)$, $V^I(t) = e^{itH}Ve^{-itH}$

Interaction Picture

Continuous Coupling

$$i\frac{dU_K^I}{dt} = KV^I(t)U_K^I(t)$$

Rescaled Schrödinger equation

$$i\frac{dU_T}{ds} = TH(s)U_T(s)$$

$$s \leftrightarrow t$$
 $T \leftrightarrow K$ $H(s) \leftrightarrow V^{I}(t)$ $P(s) \leftrightarrow P_{\mu}(t)$

$$V'(t) = \sum_{\mu} \lambda_{\mu} P_{\mu}(t)$$

 \checkmark λ_{μ} constant

$$\checkmark P_{\mu}(t) = e^{itH}P_{\mu}e^{-itH}$$
analytic

Adiabatic limit in interaction picture $(K \to \infty)$

$$U_{K}^{I}(t)P_{\mu}=\mathrm{e}^{-iK\lambda_{\mu}t}U(t)P_{\mu}+O\left(rac{1}{K}
ight)$$

Intertwining property: $P_{\mu}(t)U(t) = U(t)P_{\mu}$

Going back to the Schrodinger picture we obtain the result,

Continuous Coupling

Bang-Bang control

Comparison

$$H = \left(\begin{array}{cccc} 0 & \Omega_{12} & 0 & 0 \\ \Omega_{12} & 0 & \Omega_{23} & 0 \\ 0 & \Omega_{23} & 0 & \Omega_{34} \\ 0 & 0 & \Omega_{34} & 0 \end{array} \right)$$

$$\begin{array}{c|c}
|1\rangle & & \\
 & \Omega_{12} \\
 & \\
|2\rangle & & \\
 & \Omega_{23} \\
 & \\
 & \Omega_{34} \\
\end{array}$$

Continuous Coupling

Bang-Bang control

Comparisor

$$H=\left(egin{array}{cccc} 0 & \Omega_{12} & 0 & 0 \ \Omega_{12} & 0 & \Omega_{23} & 0 \ 0 & \Omega_{23} & 0 & \Omega_{34} \ 0 & 0 & \Omega_{34} & 0 \end{array}
ight)$$

$$\begin{array}{c|c}
1 \\
\hline
\Omega_{12} \\
\hline
\Omega_{23} \\
\hline
\Omega_{34} \\
\hline
\end{array}$$

V eigenspaces

$$\mathcal{H}_{P_1} = \operatorname{Span}\{|1\rangle, |2\rangle\}$$

 $\mathcal{H}_{P_+} = \operatorname{Span}\{|3\rangle + |4\rangle\}$
 $\mathcal{H}_{P_-} = \operatorname{Span}\{|3\rangle - |4\rangle\}$

Continuous Coupling

control

$$H = \left(\begin{array}{cccc} 0 & \Omega_{12} & 0 & 0 \\ \Omega_{12} & 0 & \Omega_{23} & 0 \\ 0 & \Omega_{23} & 0 & \Omega_{34} \\ 0 & 0 & \Omega_{34} & 0 \end{array} \right)$$

$$\begin{array}{c|c}
\Omega_{12} \\
\Omega_{22} \\
\Omega_{23} \\
\Omega_{34}
\end{array}$$

$$K \rightarrow \infty$$
?

V eigenspaces

$$\mathcal{H}_{P_1} = \operatorname{Span}\{\ket{1},\ket{2}\}$$

 $\mathcal{H}_{P_+} = \operatorname{Span}\{\ket{3}+\ket{4}\}$
 $\mathcal{H}_{P_-} = \operatorname{Span}\{\ket{3}-\ket{4}\}$

Continuous Coupling

control

$$H = \left(\begin{array}{cccc} 0 & \Omega_{12} & 0 & 0\\ \Omega_{12} & 0 & \Omega_{33} & 0\\ 0 & \Omega_{33} & 0 & \Omega_{34}\\ 0 & 0 & \Omega_{34} & 0 \end{array}\right)$$

$$H_Z = \begin{pmatrix} 0 & \Omega_{12} & 0 & 0 \\ \Omega_{12} & 0 & 0 & 0 \\ 0 & 0 & 0 & \Omega_{34} \\ 0 & 0 & \Omega_{34} & 0 \end{pmatrix}$$

$$\begin{split} \mathscr{H}_{P_1} &= Span\{|1\rangle\,, |2\rangle\} \\ \mathscr{H}_{P_+} &= Span\{|3\rangle + |4\rangle\} \\ \mathscr{H}_{P_-} &= Span\{|3\rangle - |4\rangle\} \end{split}$$

Example: transition probabilities

Continuous Coupling

$$P_{1\rightarrow j}(t) = \left|\left\langle j \,\middle|\, e^{-i(H+KV)t} \,\middle|\, 1 \right\rangle \right|^2$$

• K = 0

ontrol

$$\begin{array}{c|c}
|1\rangle & & \\
|2\rangle & & \\
& & \\
|3\rangle & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

$$H = \left(\begin{array}{cccc} 0 & \Omega & 0 & 0 \\ \Omega & 0 & \Omega & 0 \\ 0 & \Omega & 0 & \Omega \\ 0 & 0 & \Omega & 0 \end{array}\right)$$

Example: transition probabilities

Continuous Coupling

$$P_{1\rightarrow j}(t) = \left|\left\langle j \,\middle|\, \mathrm{e}^{-i(H+KV)t} \,\middle|\, 1 \,\right
angle \right|^2$$

ang-Bang $K=100\Omega$

$$H_Z = \left(\begin{array}{cccc} 0 & \Omega & 0 & 0 \\ \Omega & 0 & 0 & 0 \\ 0 & 0 & 0 & \Omega \\ 0 & 0 & \Omega & 0 \end{array}\right)$$

Bang-Bang control

Pulsed evolution: $0 \underbrace{\begin{matrix} U_{kick} & U_{kick} \\ \downarrow & \begin{matrix} U_{kick} & U_{kick} \end{matrix}}_{e^{-i\frac{t}{n}H} e^{-i\frac{t}{n}H}} t$

Kicking Unitary

$$U_{
m kick} = \sum_{\mu} {\sf e}^{-i\lambda_{\mu}} {\sf P}_{\mu}$$

Pulsed evolution:

Bang-Bang control

Kicking Unitary

$$U_{
m kick} = \sum_{\mu} {
m e}^{-i\lambda_{\mu}} {
m extit{P}}_{\mu}$$

Idea behind the method: suppose that $\mathit{U}^m_{\mathrm{kick}} = \mathbb{I}$ for some $m \in \mathbb{N}$

Pulsed evolution:

Kicking Unitary

$$U_{
m kick} = \sum_{\mu} {
m e}^{-i\lambda_{\mu}} {
m extstyle P}_{\mu}$$

Idea behind the method: suppose that $U^m_{\mathrm{kick}} = \mathbb{I}$ for some $m \in \mathbb{N}$

Then, for n = km:

Bang-Bang control

$$\begin{split} U_n(t) &= \underbrace{\left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \cdots \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right)}_{\text{n times}} \\ &= U_{\text{kick}}^n U_{\text{kick}}^{\dagger n-1} e^{-i\frac{t}{n}H} U_{\text{kick}}^{n-1} \cdots U_{\text{kick}}^{\dagger n} e^{-i\frac{t}{n}H} U_{\text{kick}} e^{-i\frac{t}{n}H} \\ &= e^{-i\frac{t}{n}H} n-1 \cdots e^{-i\frac{t}{n}H} 1 e^{-i\frac{t}{n}H} 0 \end{split}$$

Pulsed evolution:

Kicking Unitary $U_{
m kick} = \sum_{\mu} {
m e}^{-i\lambda_{\mu}} P_{\mu}$

Idea behind the method: suppose that $U_{\mathrm{kick}}^m = \mathbb{I}$ for some $m \in \mathbb{N}$

Then, for n = km:

Bang-Bang control

$$\begin{split} U_n(t) &= \underbrace{\left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \cdots \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right)}_{\text{n times}} \\ &= U_{\text{kick}}^n U_{\text{kick}}^{\dagger n-1} e^{-i\frac{t}{n}H} U_{\text{kick}}^{n-1} \cdots U_{\text{kick}}^{\dagger n} e^{-i\frac{t}{n}H} U_{\text{kick}} e^{-i\frac{t}{n}H} \\ &= e^{-i\frac{t}{n}H} n-1 \cdots e^{-i\frac{t}{n}H} e^{-i\frac{t}{n}H} 0 \end{split}$$

$$H_\ell = U_{\rm kick}^{\dagger\ell} H U_{\rm kick}^\ell$$

Continuous Coupling

Bang-Bang control Pulsed evolution: U_{kick} U_{kick} U_{kick} U_{kick} U_{kick} U_{kick} U_{kick} U_{kick} U_{kick} U_{kick}

Kicking Unitary

$$U_{
m kick} = \sum_{\mu} {
m e}^{-i\lambda_{\mu}} {
m extstyle P}_{\mu}$$

Idea behind the method: suppose that $U_{kick}^m = \mathbb{I}$ for some $m \in \mathbb{N}$

Then, for n = km:

$$U_{n}(t) = \underbrace{\left(U_{\text{kick}}e^{-i\frac{t}{n}H}\right)\left(U_{\text{kick}}e^{-i\frac{t}{n}H}\right)\cdots\left(U_{\text{kick}}e^{-i\frac{t}{n}H}\right)}_{n \text{ times}}$$

$$= U_{\text{kick}}^{n}U_{\text{kick}}^{\dagger n-1}e^{-i\frac{t}{n}H}U_{\text{kick}}^{n-1}\cdots U_{\text{kick}}^{\dagger}e^{-i\frac{t}{n}H}U_{\text{kick}}e^{-i\frac{t}{n}H}$$

$$= e^{-i\frac{t}{n}H_{n-1}}\cdots e^{-i\frac{t}{n}H_{1}}e^{-i\frac{t}{n}H_{0}}$$

An "effective" average is taking place:

$$\overline{H} = \frac{1}{n} \sum_{\ell=0}^{n-1} H_{\ell} = \frac{1}{n} \sum_{\ell=0}^{n-1} U_{\text{kick}}^{\dagger \ell} H U_{\text{kick}}^{\ell} = \dots = \sum_{\mu} P_{\mu} H P_{\mu} = H_{Z} \qquad (n = km)$$

 $[H_Z, U_{
m kick}] = 0$, only the diagonal part survives the limit while the off-diagonal part $H_{od} = H - H_Z$ (satisfying $[H_{od}, U_{
m kick}] \neq 0$) is averaged to zero.

Trotter product formula

Bang-Bang control

A and B operators on some finite dimensional Hilbert space \mathcal{H} .

$$[A, B] \neq 0 \Longrightarrow e^{A+B} \neq e^A e^B$$

"Remedy":

Trotter product formula

$$e^{A+B} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n$$

rotter product formula $e^{A+B} = \lim_{n \to \infty} \left(e^{A/n} e^{B/n} \right)^n$ $e^{A+B} = \left(e^{A/n} e^{B/n} \right)^n + O\left(\frac{1}{n} \right)$

This still works with the sum of a *finite* number of operators A_1, \ldots, A_m :

$$e^{A_1+\cdots+A_m}=\left(e^{A_1/n}e^{A_2/n}\cdots e^{A_m/n}\right)^n+O\left(\frac{1}{n}\right)$$

We cannot go further if we want to retain this rate of convergence.

Pulsed evolution:

Bang-Bang control $0 \xrightarrow[e^{-i\frac{1}{n}H} e^{-i\frac{1}{n}H}]{U_{kick}} \qquad U_{kick} \qquad U_{kick} \qquad U_{kick}$

Kicking Unitary $U_{
m kick} = \sum_{\mu} {
m e}^{-i\lambda_{\mu}} P_{\mu}$

Idea behind the method: suppose that $U_{\text{kick}}^m = \mathbb{I}$ for some $m \in \mathbb{N}$

Then, for n = km:

$$\begin{split} U_n(t) &= \underbrace{\left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \cdots \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right)}_{n \text{ times}} \\ &= U_{\text{kick}}^n U_{\text{kick}}^{\dagger n - 1} e^{-i\frac{t}{n}H} U_{\text{kick}}^{n - 1} \cdots U_{\text{kick}}^{\dagger} e^{-i\frac{t}{n}H} U_{\text{kick}} e^{-i\frac{t}{n}H} \\ &= e^{-i\frac{t}{n}H_{n-1}} \cdots e^{-i\frac{t}{n}H_{1}} e^{-i\frac{t}{n}H_{0}} \end{split}$$

An "effective" average is taking place:

$$\overline{H} = \frac{1}{n} \sum_{\ell=0}^{n-1} H_{\ell} = \frac{1}{n} \sum_{\ell=0}^{n-1} U_{\text{kick}}^{\dagger \ell} H U_{\text{kick}}^{\ell} = \dots = \sum_{\mu} P_{\mu} H P_{\mu} = H_{Z} \qquad (n = km)$$

 $[H_Z, U_{
m kick}] = 0$, only the diagonal part survives the limit while the off-diagonal part $H_{od} = H - H_Z$ (satisfying $[H_{od}, U_{
m kick}] \neq 0$) is averaged to zero.

For a *finite* number of operators A_1, A_2, \ldots, A_m :

$$\left(e^{A_1/n}e^{A_2/n}\cdots e^{A_m/n}\right)^n=e^{A_1+\cdots+A_m}+O\left(\frac{1}{n}\right)$$

Kicking Unitary $U_{
m kick} = \sum_{\mu} e^{-i\lambda_{\mu}} P_{\mu}$

Idea behind the method: suppose that $U_{\text{kick}}^m = \mathbb{I}$ for some $m \in \mathbb{N}$

Then, for n = km:

Bang-Bang control

$$\begin{split} U_n(t) &= \underbrace{\left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \cdots \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right)}_{\text{n times}} \\ &= U_{\text{kick}}^n U_{\text{kick}}^{\dagger n-1} e^{-i\frac{t}{n}H} U_{\text{kick}}^{n-1} \cdots U_{\text{kick}}^{\dagger} e^{-i\frac{t}{n}H} U_{\text{kick}} e^{-i\frac{t}{n}H} \\ &= e^{-i\frac{t}{n}H}_{n-1} \cdots e^{-i\frac{t}{n}H}_{1} e^{-i\frac{t}{n}H}_{0} \end{split}$$

An "effective" average is taking place:

$$\overline{H} = \frac{1}{n} \sum_{\ell=0}^{n-1} H_{\ell} = \frac{1}{n} \sum_{\ell=0}^{n-1} U_{\text{kick}}^{\dagger \ell} H U_{\text{kick}}^{\ell} = \dots = \sum_{\mu} P_{\mu} H P_{\mu} = H_{Z} \qquad (n = km)$$

 $[H_Z, U_{\rm kick}] = 0$, only the diagonal part survives the limit while the off-diagonal part $H_{od} = H - H_Z$ (satisfying $[H_{od}, U_{\rm kick}] \neq 0$) is averaged to zero.

Bang-Bang control For a *finite* number of operators A_1, A_2, \ldots, A_m :

$$\left(e^{A_1/n}e^{A_2/n}\cdots e^{A_m/n}\right)^n=e^{A_1+\cdots+A_m}+O\left(\frac{1}{n}\right)$$

Kicking Unitary

$$U_{
m kick} = \sum_{\mu} {\sf e}^{-i\lambda_{\mu}} {\sf P}_{\mu}$$

Idea behind the method: suppose that $U^m_{\mathrm{kick}}=\mathbb{I}$ for some $m\in\mathbb{N}$ Then, for n=km:

$$\begin{split} U_n(t) &= \left[\underbrace{\left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right) \cdots \left(U_{\text{kick}} e^{-i\frac{t}{n}H}\right)}_{\text{m times}}\right]^k \\ &= \left[U_{\text{kick}}^m U_{\text{kick}}^{\dagger m-1} e^{-i\frac{t}{n}H} U_{\text{kick}}^{n-1} \cdots U_{\text{kick}}^{\dagger n-1} \cdots U_{\text{kick}}^{\dagger n} e^{-i\frac{t}{n}H} U_{\text{kick}} e^{-i\frac{t}{n}H}\right]^k \\ &= \left[e^{-i\frac{t}{km}H_{m-1}} \cdots e^{-i\frac{t}{km}H_1} e^{-i\frac{t}{km}H_0}\right]^k = e^{-it\overline{H}} + O\left(\frac{1}{k}\right) \end{split}$$

An "effective" average is taking place:

$$\overline{H} = \frac{1}{m} \sum_{\ell=0}^{m-1} H_{\ell} = \frac{1}{m} \sum_{\ell=0}^{m-1} U_{\text{kick}}^{\dagger \ell} H U_{\text{kick}}^{\ell} = \dots = \sum_{\mu} P_{\mu} H P_{\mu} = H_{Z}$$

 $[H_Z, U_{\rm kick}] = 0$, only the diagonal part survives the limit while the off-diagonal part $H_{od} = H - H_Z$ (satisfying $[H_{od}, U_{\rm kick}] \neq 0$) is averaged to zero.

Bang-bang control

Pulsed evolution:

 $0 \xrightarrow[e^{-i\frac{t}{n}H} e^{-i\frac{t}{n}H}]{}^{U_{kick}} \xrightarrow{U_{kick}} U_{kick}$ $0 \xrightarrow[e^{-i\frac{t}{n}H} e^{-i\frac{t}{n}H}]{}^{U_{kick}} \xrightarrow[e^{-i\frac{t}{n}H}]{}^{U_{kick}} U_{kick}$

Coupling
Bang-Bang

control Compariso

Evolution operator:

$$U_n(t) = \left(U_{\rm kick}e^{-i\frac{t}{n}H}\right)^n$$

Kicking Unitary

$$U_{
m kick} = \sum_{\mu} {\sf e}^{-i\lambda_{\mu}} {\sf P}_{\mu}$$

Very frequent kicks: $n \to \infty$

$$\left(U_{kick}e^{-iHt/n}\right)^{n}-U_{kick}^{n}e^{-iH_{Z}t}=O\left(\frac{1}{n}\right)$$

$$H_Z = \sum_{\mu} P_{\mu} H P_{\mu}$$

Example: bang-bang control

Continuous Coupling

Bang-Bang control

$$H = \left(\begin{array}{cccc} 0 & \Omega_{12} & 0 & 0 \\ \Omega_{12} & 0 & \Omega_{23} & 0 \\ 0 & \Omega_{23} & 0 & \Omega_{34} \\ 0 & 0 & \Omega_{34} & 0 \end{array} \right)$$

$$U_{\rm kick} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos(\lambda) & -i\sin(\lambda) \\ 0 & 0 & -i\sin(\lambda) & \cos(\lambda) \end{array} \right)$$

Comparison

Continuous Coupling

Bang-Bang control Comparison

Continuous Coupling

$$U_K(t) = e^{-it(KV+H)}$$

Pulsed evolution

$$U_n(t) = \left(e^{-itV}e^{-i\frac{t}{n}H}\right)^n$$

Both evolutions yield a dynamics generated by

$$H_Z = \sum_{\mu} P_{\mu} H P_{\mu}$$

Continuous

Bang-Ban control

Comparison

Thank you for your attention.