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TABLE II. Results of the searches for nonexponential behavior in the long-time decay of 
56Mn. The limits on A were derived from least-square fits of our 1811-keV data by Eq. (2). 

Sample 
Initial 

activity 

Counting 
interval 

[f,/2(56Mn)] 
tin 
(h) AU/r)2\t-

1 
2 
3 
4 

1 ^Ci 
1 mCi 
1 Ci 

800 Ci 

0.3-13 
11-22 
20-33 
34-45 

2.583 ±0.008 
2.585 ±0.005 
2.576 ±0.005 
2.573 ±0.019 

< 4 . 0 x l 0 " 4 

< 3 . 4 x l 0 " 5 

< 1 . 0 x l 0 " 5 

<1 .3x lO" 5 

<0.035 
<0.011 
< 0.0068 
<0.013 

remove 24Na, 59Fe, and 60Co produced by neutron cap-
tures on parts-per-million impurities in the manganese 
sample. At the end of the irradiation, this sample con-
tained approximately 800 Ci of 56Mn. After we allowed 
this initial activity to decay for three days, the man-
ganese was dissolved in concentrated HC1 plus concen-
trated HNO3 and then passed through columns of hy-
drated antimony pentoxide and AG1-X8 anion-exchange 
resin. Lanthanum carrier was then added to the sample 
followed by concentrated HF. Unwanted rare-earth ac-
tivities such as 140La and 160Tb were precipitated as 
fluorides, then centrifuged and discarded. The man-
ganese solution was then boiled down to approximately 
100 ml for counting. 

The data obtained from each 56Mn source were first 
analyzed separately. A 56Mn half-life was determined 
from each data set by a least-squares fit to the observed 
847- and 1811-keV y-ray intensities in which the half-
life was a free parameter. In all four cases the half-life 
determined from our data agreed with the known value, 
thus indicating no dependence on the age of the source. 
The results of these fits for the 1811-keV transition are 
shown in Table II. After this was established, the indivi-
dual decay curves were normalized to one another and 
then combined to obtain the composite decay curves for 
the 847- and 1811-keV y rays shown in Fig. 3. The 
straight line drawn through each set of data is the result 
of a least-squares fit with the assumption of purely ex-
ponential decay with the known 56Mn half-life. It has 
been suggested26 that decay curves may actually be de-
scribed by 

7VO)=7Voexp(-r / r ) [ l+^(r / r ) 2 ] . (2) 

Our data were also analyzed to search for nonexponen-
tial effects of this type. No indications of such deviations 
were found in our data and the limits derived on their 
amplitudes are shown in Table II. 

In conclusion, we have performed the first search for 
deviations from the exponential decay law at short times 
compared with the lifetime of the decaying system with 
use of the /3 decay of 60Co. Analysis of our data indi-
cates that oscillatory behavior in the range of periods of 
(10 " 1 0 to 3 x 10 ~6)t 1/2 contributes no more than 5.6% to 
the decay rate of 60Co. We have also extended the limits 
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FIG. 3. Composite decay curves for the 847- and 1811-keV 
y rays observed from the decay of 56Mn. The straight lines are 
the results of least-squares fits with the assumption of purely 
exponential decay with the known 56Mn half-life. 
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Abstract

A long time scale experimental testing of the exponential decay law of gold, 198Au, is presented. The experiment has been processed by
using a contemporary digital spectrum analyzer. Within the limits of the experimental errors no deviation from the exponential decay law
of 198Au has been observed.
r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The consideration of general problems of decay of the
unstable systems by Khalfin [1] demonstrated that decay
rate of a quasi-stationary state does not obey exactly the
exponential law. The evidence of the non-exponential
decay of a quasi-stationary state was performed on the
basis of the general quantum-mechanical presumptions.
The validity of this evidence was general and did not
depend on the applied decay model of the quasi-stationary
state. The decay rate deviations from the exponential law
were expected for very short and very long times after the
set up of the quasi-stationary states. The origin of the short
time deviations from the exponential decay law lies in the
nature of behavior of the survival probability amplitude [2]
at the very beginning of the set up of the quasi-stationary
states. Applying Paley–Wiener’s theorem, Khalfin [1]
demonstrated that the decay rate was slowing-down for
long times. Inside these long time intervals the survival
probability function satisfies the inverse power law.
Between the very short and very long time intervals, the
decay rate of the quasi-stationary states should obey the
exponential law with high accuracy. After this exponential

time behavior and just prior the inverse power-like
behavior the survival probability function exhibits very
fast oscillations. The frequency of these oscillations is very
high and they could not be experimentally observed.
All these considerations are quite general and they give

just the qualitative examinations of time behavior of the
survival probability function. Predictions of the time
intervals when the survival probability considerable de-
viates from the exponential law depend on the considered
physical system and on the applied decay model. For
example, in the case of a nuclear de-excitation by g-ray
emission Newton [3] predicts the long time deviation from
the exponential decay after 1017 lifetimes. Other
authors [1,4,5] give predictions for the long time deviations
from the exponential decay law of about several hun-
dredths of half lives. Fonda et al. [2] have analyzed
a decay model and showed that in some circumstances
significant deviation from the exponential decay law
could occur at about 10 lifetimes and the inverse
power-law domination could occur at about 25 lifetimes.
Goldberger and Watson [6] pointed out that the exponen-
tial decay law was just one of a discrete set of possible
decay laws and the non-exponential effect could occur at
any time so the experimental investigations would be
worthwhile in order to determine such deviations in the
decay law.
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• Gamow
• Weisskopf - Wigner
• Friedrichs - Lee
• Fermi
• Fock - Krylov



a(t) = ⟨ψ |e−itHψ⟩

a(t) = ⟨ψ |e−itHψ⟩ = ∫ e−iEt d μψ(E)

Survival amplitude

p(t) = |a(t) |2Survival probability

Quantum systems

μψ(Ω) = Prob ( E ∈ Ω )

Fourier transform

μψ = μpp + μac + μsc spectral measure

Lebesgue decomposition theorem

E spectrum



a(t) = ⟨ψ |e−itHψ⟩

a(t) = ⟨ψ |e−itHψ⟩ = ∫ e−iEt d μψ(E)

Survival amplitude

Pure point spectrum

Fourier transform

μψ = μpp = ∑
j

|cj |
2 δ(E − Ej) pure point

a(t) = ⟨ψ |e−itHψ⟩ = ∑
j

|cj |
2 e−iEjt

cj = ⟨Ej |ψ⟩

almost periodic motion

p(t) → ∑
j

|cj |
4 = const > 0, as t → ∞

E



a(t) = ⟨ψ |e−itHψ⟩

a(t) = ⟨ψ |e−itHψ⟩ = ∫ e−iEt d μψ(E)

Survival amplitude

Continuous spectrum

Fourier transform

μψ = μac + μsc continuous spectrum

p(t) → 0, as t → ∞ RAGE theorem

E



a(t) = ⟨ψ |e−itHψ⟩

⟨ψ |e−itHψ⟩ = ∫ e−iEt d μψ(E)

pψ(E) =
d μψ(E)

d E
pψ(E) = |⟨E |ψ⟩ |2 ≥ 0

lim
t→∞

a(t) = lim
t→∞ ∫ e−iEtpψ(E)d E = 0

Survival amplitude

p(t) = |a(t) |2Survival probability

unstable system

Riemann-Lebesgue lemma

Quantum unstable systems

μψ = μac

absolutely continuous



a(t) = ⟨ψ |e−itHψ⟩Survival amplitude

p(t) = a (t)
2

= ⟨ψ |exp(−itH)ψ⟩
2

p(t) = 1 − t2 (⟨Hψ |Hψ⟩ − ⟨ψ |Hψ⟩2) + o (t2)
as t → 0

ψ ∈ D(H) ∥Hψ∥ < ∞

Short times

finite variance



Short times
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a(t) = ∫
∞

0
e−iEtpψ(E) dE

∫ℝ

−ln |a(t) |
1 + t2

dt < ∞

Large times

Paley-Wiener theorem

pψ(E) = |⟨E |ψ⟩ |2 = 0 for E < 0

a(t) ∼
C
tα

Ground energy

E0
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General considerations on evolution law of a decaying quantum system

I. INTRODUCTION

The decay of unstable quantum mechanical systems is
only approximately exponential [2, 3]. At short times,
the decay is quadratic, while at long times the decay is
governed by a power law. A typical quantum evolution
is displayed in Fig. 1.

The above-mentioned features of the quantum evolu-
tion are consequences of first principles. The quadratic
behaviour stems from a short-time expansion of the
Schrödinger evolution. The mathematical hypotheses
that justify such expansion are the normalizability of the
wave function and the finite energy of the initial state:
these conditions are so sacrosant from a physical point of
view that they are considered to be indispensable. The
ensuing “Zeno” region [4] has been experimentally con-
firmed on different physical systems [[Give list of ex-
pts]] [5, 6].

The familiar exponential decay sets in at intermediate
times. It is always the consequence of approximations of
some sort (usually weak-coupling and/or Markovianity).
A proper treatment of this difficult problem requires a
quantum field-theoretical analysis of the propagator, and
its analytic continuation in the second Riemann sheet of
the complex energy plane.

The long-time evolution is a consequence of the lower-
boundedness of the Hamiltonian. This condition is also
considered to be not renounceable from a physical per-
spective. Under this hypothesis, a straightforward ap-
plication of the Paley-Wiener theorem on Fourier trans-
forms yields long-time power tails. Unlike the short-time
Zeno region, power-like decays have never been observed
(to the best of our knowledge). They are difficult to de-
tect, essentially because the long-time evolution is pre-
ceded by an exponential regime, that drastically depletes
the initial state, making any subsequent observation pro-
hibitively difficult.

The duration of the three afore-mentioned temporal
regimes and the transition times that separate them de-
pend on dimensionality and the parameters that charac-
terize the physical system. Typically (but not always),
the duration of the Zeno region scales with the square of
the coupling constant, while the transition to a power law
takes place at a time of the order of its logarithm (and
can be, say, a hundred lifetimes). In typical decaying sys-
tems (such as an unstable particle or an excited atom)
the Zeno region is so short as to result unobservable, and
the power law sets in after such a long time that virtually
all systems have already (exponentially) decayed.
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FIG. 1. [[Fig. TO BE IMPROVED. DISCUSS WITH
FRANCESCO]] Decay of an unstable quantum system.
The initial (Zeno) region is quadratic. At intermediate times
the decay is approximately exponential. At long times the
evolution is governed by a power law. The extrapolation of
the exponential law at t = 0 yields a value Z 6= 1: this is
named wave-function renormalization.

In this work we shall take these factors into account
and shall pursue a different route. We shall optimize the
parameters of our system in such a way that the different
dynamical regime can be detected and scrutinized. Our
main focus will be on power-like decay. We shall design
our decaying system in such a way that the exponential
regime is reduced (or almost suppressed), so that a power
law decay sets in soon after after the Zeno region.

[[Actually, we do much more than this. We ob-
serve i) Zeno, ii) wave function renormalization
Z, iii) power law. We need to discuss before we
decide what to write. However, this is a starting
point and give you an idea of the Introduction I
have in mind. I hope that this will enable us to
decide to which journal we can submit the arti-
cle.]]

II. QUANTUM MECHANICAL EVOLUTIONS

A. Short times

[[DONT READ YET. I still have to decide what
to write.]]

Let H be the Hamiltonian of a quantum system and



a(t) = ∫ℝ
e−iEtpψ(E) dE

a(t) = exp (−
γ
2

| t | − i ω0t)

pψ(E) =
1

2π ∫ℝ
eiEta(t) dt =

γ
2π

1

(E − ω0)2 + γ2

4

⟨E |ψ⟩ = ϕC(E) = pψ(E) eiα(E) ϕC(E) =
γ

2π
1

E − ω0 − i γ
2

Exponential decay?

Fourier transform

pψ(E) = |⟨E |ψ⟩ |2



ϕC(E) =
γ

2π
1

E − ω0 − i γ
2

⟨ϕC |e−itqϕC⟩ = exp (−
γ
2

| t | − i ω0t)

Exponential decay

Cauchy
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exponential

H = q position operator spec H = ℝ

E0



ℋ = ℂ2 ⊗ L2(ℝ)

H = |0⟩⟨0 | ⊗ q++ |1⟩⟨1 | ⊗ q− ≃ (q+
q−)

q+ϕ(x) = x+ϕ(x)

q−ϕ(x) = x−ϕ(x)

Subsystem evolution

x+x−

ψ = |0⟩ ⊗ ϕ0 + |1⟩ ⊗ ϕ1 ≃ (ϕ0

ϕ1)
spin-1/2 particle

Hamiltonian

ramp functions



⟨ψ |Hψ⟩ = ⟨ϕ0 |q+ϕ0⟩ + ⟨ϕ1 |q−ϕ1⟩

= ∫
+∞

0
x( |ϕ0(x) |2 + |ϕ1(−x) |2 )dx ≥ 0,

Subsystem evolution

positive Hamiltonian

H = (q+
q−) ψ = (ϕ0

ϕ1)

x+x−

q = q+ − q−



H = |0⟩⟨0 | ⊗ q+ + |1⟩⟨1 | ⊗ q−

U(t) = |0⟩⟨0 | ⊗ e−itq+ + |1⟩⟨1 | ⊗ e−itq−

ρ(t) = tr2 (U(t)(ρ ⊗ |ϕC⟩⟨ϕC | )U(t)†)

f(t) = ⟨ϕC |e−itqϕC⟩ = e− γ
2 |t|−i ω0t

Subsystem evolution

unitary group

reduced density 
matrix

subsystem evolution

exponential overlap function

ρ ⊗ |ϕC⟩⟨ϕC | factorized initial state

ρ(t) = (
ρ00 f(t) ρ01

f(t) ρ10 ρ11 )
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|ξC(x) 2



ρ(t) = etℒρ ℒρ(t) = − i ω0[σz, ρ(t)] −
γ
2

[σz, [σz, ρ(t)]]

σz = |0⟩⟨0 | − |1⟩⟨1 |

Subsystem evolution

GKLS master equation

dephasing channelρ(t) = (
ρ00 e− γ

2 t−i ω0t ρ01

e− γ
2 t+i ω0t ρ10 ρ11 )

Markovian!



ρ(t) = etℒρ ℒρ(t) = − i ω0[σz, ρ(t)] −
γ
2

[σz, [σz, ρ(t)]]

σz = |0⟩⟨0 | − |1⟩⟨1 |

σx = |0⟩⟨1 | + |1⟩⟨0 |

ω0 = 0

⟨σx(t)⟩ = tr(σxρ(t)) = ⟨σx(0)⟩e− γ
2 |t|

Exponential decay!

exponential

polarization



ρtot(t) = e−itHρtote+itH = e−it𝒢(ρtot)

𝒢ρtot = [H, ρtot]

A = A†

⟨A(t)⟩ = tr(Ae−itHρtote+itH) = tr(A e−it𝒢(ρtot))

Paley-Wiener?

spec 𝒢 = spec H − spec H

Liouvillian

generic observable

0
Hamiltonian spectrum

0
Liouvillian spectrum



𝒢ρtot = [H, ρtot]

⟨A(t)⟩ = tr(Ae−itHρtote+itH) = tr(A e−it𝒢(ρtot))

Paley-Wiener?

Survival probability

A = ρtot = |ψ⟩⟨ψ |

⟨A(t)⟩ = tr( |ψ⟩⟨ψ |e−itH|ψ⟩⟨ψ |e+itH) = |⟨ψ |e−itHψ⟩ |2 = p(t)

Very special! It depends on absolute values of energy 



H = |0⟩⟨0 | ⊗ V(q) + |1⟩⟨1 | ⊗ V(−q)

W(x) = V(x) − V(−x)

x+x−

Non-analitic potential?

ramp function

V(x)V(−x)

increasing function



H = |0⟩⟨0 | ⊗ V(q) + |1⟩⟨1 | ⊗ V(−q)

W(x) = V(x) − V(−x)

ρ ⊗ |ϕ⟩⟨ϕ |

f(t) = ⟨ϕ |e−itW(q) ϕ⟩

Non-analitic potential?

V(x)V(−x)

increasing function

subsystem evolutionρ(t) = (
ρ00 f(t) ρ01

f(t) ρ10 ρ11 )



H = |0⟩⟨0 | ⊗ V(q) + |1⟩⟨1 | ⊗ V(−q)

V(x) = exp(x)

W(x) = V(x) − V(−x) ρ ⊗ |ϕ⟩⟨ϕ |

f(t) = ⟨ϕ |e−itW(q) ϕ⟩

ϕ(x) = |W′�(W−1(x)) |−1/2 ϕC(W−1(x))

W(x) = 2 sinh x

ϕ(x) =
γ

4π cosh y
1

y − ω0 − i γ
2

y = arcsinh (x/2)

ρ(t) = (
ρ00 f(t) ρ01

f(t) ρ10 ρ11 )
initial state

Example



Thank you!


