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Aim of the talk

How should we modify the equations of quantum mechanics when
dealing with observables that do not preserve the domain of the
Hamiltonian?

Plan

e Motivation.

e Self-adjoint extensions of symmetric operators.
e Anomalous Heisenberg equation.

e Hellmann-Feynman theorem.

e Virial theorem.

e Quantum quench dynamics.
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Motivation

- H infinite dimensional Hilbert space.
- H unbounded self-adjoint Hamiltonian with dense domain Dy.
- B bounded observable.

The equation for the evolution of B in the Heisenberg picture is

d

—B=i|H,B

dt 1[ Y ]

This expression makes sense in Dy if B(Dy) C Dy,

but what, if this does not happen?
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Motivation. Example.

H = L*([0,1]), Hy= —%a,i with

Do = {1 € AC*([0,1]) | (1) = e"9(0), ¥'(1) = e'*¢'(0)}
Consider the parity operator Py(x) = (1 — x)
P(Dgy) = D_,
For a. # 0, 7 the domain is not preserved.

And the Heisenberg equation

d
—P =i(H,P — PH,
3L =1 )

does not make sense in D,
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Self-adjoint extensions of symmetric operators
H closed symmetric operator with dense domain Dy CH
(alHxe) = (Hxalxe)
The adjoint operator H' has domain
Dgyy ={ e H|(y|H-):Dg — C, bounded}
Riesz rep. thm.: there isa Hfyp € H s. t.
(WIH-) = (H"Y|)
Obviously:
Dﬁ C Df{T and

fIHDH:.FNI or equiv. H c HT
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Boundary values.

The abstract space of boundary values is the quotient

B =Dyi/Dy

Example:
Hy = —192 with domain Dy = {x € AC?([0,1]) | 0,1 ¢ supp(x)}
Hy is symmetric but not closed.

Its closure is H = — 102 with domain
Dy = {x € AC*([0, 1)) [x(0) = x(1) = X'(0) = x'(1) = 0}

Dy = AC?([0,1])
B~ C*

Dyi/Dyg 3 [¥] = (4(0),%(1),¢/(0),4'(1)) € C*
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Boundary conditions.

Extensions of H are obtained through the choice of boundary
conditions i. e. a subspace of the boundary values

CCB.
The extension H D H is
H=H'p,
with
Dy =7 C)

and 7 is the projection
VI Dﬁ]T — DgT/Df{

Relation between boundary conditions of H and its adjoint?
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Boundary flux.

We introduce the boundary flux

A1, 49) = i (HTb1,bo) — i (1, Hi4a), 1,102 € Dy

which is a symmetric sesquilinear form

A1, ¥2) = A2, 1)
A is degenerate, actually
A, x) =0forany ¢ € Dy <= x € Dy
therefore ker A = Dy and A is a boundary term.

It projects to a non degenerate, sesquilinear, symmetric form in the
space of boundary values

A:BxB—C
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Boundary flux

A is important for the theory of self-adjoint extensions, because for

any H s.t.

HcHcH'

the domain of its adjoint is the A-orthogonal of Dy,

Proof:

Y € Dy =
=
=

<~

Dyt = Dy
(¢|H-) bounded in Dy
([H-) — (H"|) =0 in Dy
14(@0, )44—()1D,l)}{
(CNS D;“

Then H is self-adjoint (Dy = Dyy+) if and only if D;A =Dy

or, in other words, iff Dy is an A-Lagrangian subspace.
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Lagrangian subspaces
A way to produce A-Lagrangian subspaces £ C B is as follows.

- Introduce a Hermitian product (-,-) in B's. t.

B =B LB and A([vn], [¥2]) = ([¥1], [¥5]) — (W1 ] [¥2 )

- The previous is not canonical but n,. =dim By, n_ = dim B_
are invariant (default indices).

- If ny # n_ there are not A-Lagrangian subspaces.
- If n, = n_, the A-lagrangian subspaces L are of the form:
L= (I+U)Bs with U : By — B_ unitary w.r.t. (-,-)

. There are several ways of accomplishing this program
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Lagrangian subspaces. Examples
i) von Neumann
(1, 2) = (W1 |tha) + (HTepy |HTepo)
Define H. = ker(H' +1), then Dgi=Dgpg LH, LH-
Dgi/Dg ~Hy LH_ and
AWy + 00,00 +00) = (W, 405) = (U1, 4)
ii) Asorey-Ibort-Marmo
ot =-192, B~ C* with standard scalar product (-,-)
By = span{(1,1i,0,0),(0,0,1,—i)}
B_ = span{(1,—1,0,0),(0,0,1,i)}.

1 1, -
A(wy, we) = i(wf,w;) - §(w1 ,wy)
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Anomalous Heisenberg equation

Let H : Dy — H be a self-adjoint extension of H.
B bounded observable s. t. B(Dy) ¢ Dg,
but B(DH) C Df[ and B(DHT) (- DHT'

% (1| Bibn) = —i (31| BH2) + i (Hapr | Bips)
= —i (1| BH o) +i (1| H Bipo)
i (A 1| Biba) — i (w1 | H Bupa)

= i (|[HT, Bltha) + A(h1, Bibs)

For time dependent B:

%<w1\3¢2> <w1\< B+ilH", B ]>¢2>+A(1/)1,B¢2)
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Anomalous Heisenberg equation. Example.
H, = —502,
Do = {1 € AC*([0,1]) | (1) = *9(0), ¥'(1) = e*¢'(0)}
ot =-192, Dy, = AC*([0,1])
Py(z) =¢(l —z), P(Do) =D_q
[HT, P] = 0 then

d
T (P1|Pp2) = A1, Pypa)

= 2(1(0)9h(0) — ¥ (0)y2(0)) sina

Anomaly cancels for « = 0 and a = 7, when D, is P-invariant.
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Hellmann-Feynman theorem

The previous also applies to the Hellmann-Feynman theorem:

Consider an a-dependent Hamiltonian H, with domain D,,

Hotpo = Eata, (Yaltha) =1

Then the Hellmann-Feynman theorem says

dE, , |OH,
do ~ Welgg V)

1
But: H, = —58323

Do = {t € AC*([0,1]) | (1) = €*(0), ¥'(1) = ¢/ (0)}.

Then E, = (2mn + «)? and

0H, . OEy
Do = 0 while Do =47(2mn + «)

The problem is that 1), is not in the domain of H,/
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Hellmann-Feynman theorem. A closer look.
Take ﬁa C H, C Iﬂ{ and assume ), € Dﬁf ,
Then Eo = (o] HY ¥) and the following holds

for any a, o

OH] M

dE, t
271} ) + (ol o) + (Sl )

do

o

- (5

But given that H} 1y = Fathe and (1ha|ths) = 1 we have

o 0¢a> _0
o) =

(G 1L o) = (Hltl

Then the generalization of Hellmann-Feynman theorem reads.

dBy OH, o
o = (Wl va) +1A®Wa, 5 =)
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Virial theorem
A similar anomalous disease infects the virial theorem.

Take % = L*([0,1]) and H =T + V (z) with T = —32, then for
any stationary state, the virial theorem says

But: Take V' = 0 and periodic boundary conditions, then
@Z}n (ZU) — eZWinaz

(Yn|Tpn) = 27°n%  while  (¢p|20:V i) =0

In this occasion both expectation values are well defined with the
operators correctly acting in their domains.

Where is the problem?
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Virial theorem. A closer look.

In order to prove the virial theorem we introduce the virial operator
G = x0,, such that in the appropriate domain

[H,G] =2T — 20,V (z).
But G, Dy and (¢,,|[H, G]|1y,) does not make sense.
A way to proceed is to extend H to H' so that Gi, € Dy and
(Wl AT, Gllgn) = (2T — 28,V () )
Now using (tn|GH[n) = (H'n|Gltbn) = Ep (n|Glibn),

(Vp|2T — 20,V () |thyn) = 1A(n, Gy
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Quantum quench dynamics

Take 19 € Dp, and suddenly change Hy to H, then the state
evolves with the new Hamiltonian, but g is not in its domain...

We define the unitary operator U (t) = '/t in Dy (by functional
calculus for instance) and then it is continuously extended to the
full Hilbert space.

»(t) = Un(t)ho

1 (t) is strongly continuous but, in general, it is not differentiable.

Also 9(t) & Dp, and even considering the extension H' > H, Hy

V() & Dy
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Quantum quench dynamics. Example
Let us consider an example in L2(R).
H=-i0,, Dj={yeACR)|¢(0)=0}
H' = -i9,, Dg; = AC(R™) @ AC(RY)

Self-adjoint extensions H,, are parametrized by a phase € such
that Do = {¢ € Dy [1(07) = e*4(07)}
They can be understood as the insertion of a d-function.

a—1i
a+i

Hotp(x) = —i8z(x) + ad(x) (H(0F) +9(07)), &=

Then, a quench that changes « is like changing the strength of the
é potential.
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Quantum quench dynamics. Example
In this example it is easy to compute the evolution.

For t > 0 one has

pla—t)  x¢(0,1)

Ua(t)p(x) = {eiaw(x —t) x€(0,%)

e Observe that for ¢ € Dy we have
Ua()(07) = e"p(—t7) = " *p(—t7) = e Ua(t)1(07)
That is, the boundary conditions are fulfilled

e If (0F) # e®(07) evolution produces a singularity in x = ¢.

Ua(t)(t7) = 9(07),  Ua(®)y(t™) = e“9(07)
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Conclusions

The introduction of observables that do not preserve the domain of
the Hamiltonian induces the appearance of anomalous boundary
terms.

These terms modify several equation of quantum mechanics like
Heisenberg equation, Hellmann-Feynman theorem or the virial
theorem.

When the initial state is not in the domain of the Hamiltonian (like
it could happen in a quench) the evolution may drive the system

outside the domain of HT.

In some cases the boundary conditions are instantaneously restored
while in the bulk there appear singularities.
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