

SIDDHARTA - 2 STATUS REPORT

Johann Zmeskal for the SIDDHARTA-2 Collaboration

55th LNF-INFN SCIENTIFIC COMMITTEE May 14, 2018

WWW.OEAW.AC.AT/SMI

CONTENT

Scientific Motivation SIDDHARTA-2 apparatus Time schedule

SIDDHARTA-2 Collaboration

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

LNF- INFN, Frascati, Italy SMI- ÖAW, Vienna, Austria Politecnico, Milano, Italy IFIN – HH, Bucharest, Romania TUM, Munich, Germany, Germany **RIKEN**, Japan Univ. Tokyo, Japan Victoria Univ., Canada Univ. Zagreb, Croatia Helmhotlz Inst. Mainz, Germany Univ. Jagellonian, Krakow

The scientific goal

To perform precision measurements of kaonic atoms X-ray transitions

unique information about QCD in the non-perturbative regime in the strangeness sector not obtainable otherwise

Started with the precision measurement of *shift* and *width* of *kaonic hydrogen* > NOW first measurement of kaonic deuterium

to extract the antikaon-nucleon isospin dependent scattering lengths

chiral symmetry breaking (mass problem), EOS for neutron stars

FORMING "EXOTIC" ATOMS

X-RAY TRANSITIONS TO THE 1s STATE

SCATTERING LENGTHS

Deser-type relation connects shift ε_{1s} and width Γ_{1s} to the real and imaginary part of a_{K-p}

$$\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^{3}\mu_{c}^{2}a_{K^{-}p}(1 - 2\alpha\mu_{c}(\ln\alpha - 1)a_{K^{-}p})$$

(μ_{C} reduced mass of the K⁻p system, α fine-structure constant)

U.-G. Meißner, U.Raha, A.Rusetsky, Eur. phys. J. C35 (2004) 349 next-to-leading order, including isospin breaking

$$a_{K^{-}p} = \frac{1}{2} [a_0 + a_1]$$

$$a_{K^{-}n} = a_1$$

$$a_{K^{-}n} = \frac{k}{2} [a_{K^{-}p} + a_{K^{-}n}] + C = \frac{k}{4} [a_0 + 3a_1] + C$$

$$k = \frac{4[m_n + m_K]}{[2m_n + m_K]}$$

Geant4 simulated K⁻d X-ray spectrum

Physical Review C96 (2017) 045204

arXiv:1705.06857v1 [nucl-th] 19 May 2017

Constraining the $\bar{K}N$ interaction from the 1S level shift of kaonic deuterium

Tsubasa Hoshino,¹ Shota Ohnishi,¹ Wataru Horiuchi,¹ Tetsuo Hyodo,² and Wolfram Weise^{2, 3}

¹Department of Physics, Hokkaido University, Sapporo 060-0810, Japan ²Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan ³Physik-Department, Technische Universität München, 85748 Garching, Germany

Motivated by the precise measurement of the 1S level shift of kaonic hydrogen, we perform accurate three-body calculations for the spectrum of kaonic deuterium using a realistic antikaonnucleon $(\bar{K}N)$ interaction. In order to describe both short- and long-range behavior of the kaonic atomic states, we solve the three-body Schrödinger equation with a superposition of a large number of correlated Gaussian basis functions covering distances up to several hundreds of fm. Transition energies between 1*S*, 2*P* and 2*S* states are determined with high precision. The complex energy shift of the 1*S* level of kaonic deuterium is found to be $\Delta E - i\Gamma/2 = (670 - i508)$ eV. The sensitivity of this level shift with respect to the isospin I = 1 component of the $\bar{K}N$ interaction is examined. It is pointed out that an experimental determination of the kaonic deuterium level shift within an uncertainty of 25 % will provide a constraint for the I = 1 component of the $\bar{K}N$ interaction significantly stronger than that from kaonic hydrogen.

Hot topic: Neutron star, strangeness content - EOS

Theory – SIDDHARTA-2

⁵⁵th LNF SC - May 14, 2018

SIDDHARTA-2 setup

- > platform
- cryogenic target
- cryo target SDD veto system
- beam pipe
- Silicon Drift Detector array

SIDDHARTA-2 cooling

✓ Target + SDD cooling: 1 Leybold MD10 – 16 W @ 20 K target cell and SDDs will be cooled via ultra pure aluminum bars $T_{TC} = 30 K$ $T_{SDD} = 50 K$

✓ Line driver boards: 2 CryoTiger – 30 W @ 120 K copper-band cooling lines $T_{LD} = 120 \text{ K}$

SIDDHARTA-2 vacuum chamber

SIDDHARTA-2 cryogenic target

Working temperature: 30 K Working pressure : 0.3 MPa

Final test during summer 2017: Pressurised for 16 days with P = 0.3 MPa (overP)

Cooling/pressure test

- 2.5 weeks 30 K / 0.19 MPa
- 3.5 days 30 K / 0.31 MPa
- Target cell wall is made of a
 2-Kapton layer structure
 (25 μm + 25 μm + Araldit < 100 μm)

> HP Deuterium generator

SIDDHARTA-2 apparatus

4x2 SDD array

The veto-2 system

Veto-2 arrangement

Scintillator mounting box BC-408 scintillator tiles with 4x4 mm² SiPM – NUV-Trento

The veto-2 system

✓ 24 sub-units mounted and tested

The veto-1 system

To achieve a good timing resolution, (independent of the "hit" position) < 600 ps (FWHM), the scintillator has to be read out on both side.

Because the available space is limited due to shielding material, the photomultiplier tubes have to be on the same side (a special light-guide mirror design was used). *PAPER*

SIDDHARTA-2 - Luminosity monitor (based on kaons)

Size: $8 \times 8 \text{ cm}^2$, on both sides of the beam pipe, made of 2 pieces $8 \times 4 \text{ cm}^2$ thickness = 2 mm distance $v = \pm 4$ cm off beam

coincidence rate: 25.7 %
 single rate at boost side: 42.7 %
 with a luminosity L = 10³² and 62 Hz (on boost-side)
 in 5 seconds: 310 counts

SIDDHARTA – beam pipe

SIDDHARTA-2 beam pipe

✓ delivered

- final inner diameter 57 mm
- Alu thickness 150 µm
- Carbon fibre reinforcement 500µm

SIDDHARTA-2 setup

SDD X-ray detector

The "new" Silicon Drift Detector

> SIDDHARTA

- JFET integrated on SDD
- lowest total anode capacitance
- limited JFET performance
- sophisticated SDD+JFET technology

- external CUBE preamplifier (MOSFET input transistor)
 - larger total anode capacitance
 - better than FET performances
 - standard SDD technology

radiation entrance window

The CUBE preamplifier

- A full CMOS preamplifier is mounted on ceramic board connected via bonding
- The CUBE replaces the JFET, which was direct implanted on the anode side on the SIDDHARTA type SDDs
- Short bonding lines from CUBE to SDD, no difference in the detector performance
- Advantage, the preamplifier is connected close to the SDD and not only the FET → ASIC of analogue processing can be placed relatively up to ~100 cm away

New SDD technology: CUBE preamplifier

SDD delivery \rightarrow SDD bonded + mounted

4x2 SDD array - single unit

Shipping package

SDD mounting / bonding

4x2 SDD chip

device for gluing and bonding

mounting and bonding process under control

4 x 2 matrix SDD chip - testing

New SDD testing facility - LNF

Mounting device for 8 SDD units

SDD testing facility - SMI

SIDDHARTA SDD arrays status end of April 2018

Total delivered SDDs: 54

✤ 15 more SDDs are ordered

- ➢ 46 SDDs assembled/bonded/tested
- ➢ 8 SDDs assembled/bonded

□ TOT number of working channels 318/368 (86%)

- 26 with 8 ch.
- 11 with 7 ch.
- 5 with 6 ch.
- 4 with less than 6 ch.

SIDDHARTA-2 schedule

SIDDHARTA-2 schedule (Phase 1: technical run)

- Assembling plan: test setup (1 unit of SDDs) assembled and tested in laboratory within October 2018
- Installation at DAΦNE: November 2018
- ➢ Test, debug and run

Gantt chart: SIDDHARTA-2 installation at DA Φ NE

	1 st day	2 nd day	3 rd day	4 th day	5 th day			
SIDDHARTA-2 installation								
Moving to DAFNE	\longleftrightarrow							
Apparatus setup at DAFNE								
Cabling								
Leak tests								
Test SDD connections								
Test kaon monitor and veto				\longleftrightarrow				
Start pumping system				\longleftrightarrow				
Start cooling target cell					\longleftrightarrow			
Start cooling SDDs					$\langle \rangle$			

	6 th day	7 th day	8 th day	9 th day	10 th day			
SIDDHARTA-2 commissioning								
SDD DAQ	<							
Veto + Kaon monitor DAQ								
Veto + Kaon m. + SDDs		•	N					

Technical run – commissioning

- Start end of Nov. 2018
- ▶ with full DA Φ NE luminosity monitor \rightarrow SIDDHARTA-2 has to be lifted ~100 mm
- with 8 SDD arrays 1 DAQ sub-unit
- complete Veto systems
- ➢ kaon monitor
- SIDDHARTA luminometer

GOAL: run with He-4 (same condition as SIDDHARTA)

to achieve same signal to BG ratio as with SIDDHARTA

SIDDHARTA-2 Technical run

Installation on DAFNE will start November 2018

Technical run start has to be confirmed target position 100 mm higher in order to install the DAΦNE luminosity monitor for optimal beam tuning!

- with 8 SDDs (one DAQ bus subsystem)
- with complete Veto I + II
- with kaon monitor
- SIDDHARTA-2 luminosity monitor

Technical run until 2019

as long as similar beam/BG conditions are reached as compared with SIDDHARTA \rightarrow tested with kaonic helium

SIDDHARTA result – kaonic helium-4

Setup technical run – phase I

Veto-1

Kaon monitor

L

55th LNF SC - May 14, 2018

SIDDHARTA-2 K-d measurement – phase II

Future programme and perspectives:

- Feasibility studies in parallel with Siddharta-2 (Ge and VOXES)
- Plan for Extension of the scientific program
- Kaon mass precision measurement at a level < 7 keV
- Kaonic helium transitions to the 1s level

- Other light kaonic atoms (K⁻O, K⁻C,...)
- Heavier kaonic atoms (K⁻Si, K⁻Pb...)
 - > Radiative kaon capture $\Lambda(1405)$ study
 - Investigate the possibility of the measurement of other types of hadronic exotic atoms (sigmonic hydrogen ?)

SIDDHARTA-2 Collaboration

Silicon Drift Detector for Hadronic Atom Research by Timing Applications

LNF- INFN, Frascati, Italy SMI- ÖAW, Vienna, Austria Politecnico, Milano, Italy IFIN – HH, Bucharest, Romania TUM, Munich, Germany, Germany **RIKEN**, Japan Univ. Tokyo, Japan Victoria Univ., Canada Univ. Zagreb, Croatia Helmhotlz Inst. Mainz, Germany Univ. Jagellonian, Krakow

Personnel issue - SIDDHARTA-2 (1)

Note: SIDDHARTA-2 survived from 2009 until now – it was a difficult task but successfully realized

We have secured the personnel needs to install the SIDDHARA-2 on DAFNE and for the Technical run (if done within April 2019) – all specific tasks are covered, including:

DAQ, SDDs detectors and electronics, veto systems, trigger, luminosity monitor, mechanics, vacuum and cryogenic, shifts for data taking, MCarlo and data analyses)

Personnel issue - SIDDHARTA-2 (2)

Specific Tasks:

LNF-INFN: responsible for DAQ, SDDs, part of readout, trigger, veto1, supports and shielding, slow control, contact with DAFNE; installation, debug, shifts, MCarlo and data analyses

SMI-Vienna: responsible for cryogenic, vacuum, veto2, SDDs, target system, MCarlo; participate in installation, debug, shifts, data analyses

Politecnico Milano: responsible with readout electronics SDD; participate in installation and debug

Jagellonian Univ. Krakow: responsible for luminosity monitor; participate in shifts and data analyses

To the installation and debug, shifts and data analyses participate: Univ. Zagreb; IFIN-HH; RIKEN and Univ. Tokyo; Data analyses and interpretation, R&D: TUM Munich; Helmhotlz Inst. Mainz; Univ. of Victoria

Personnel issue - SIDDHARTA-2 (3)

After April 2019 main part of tasks are covered, however for LNF-INFN there are specific tasks for which support is needed for the dedicated kaonic deuterium run:

- extension of post-doc position for F. Sirghi: trigger system, contact with DAFNE, data taking
- 1-2 new post-doc positions: DAQ and SDDs, data taking
- new temporary contract: data analyses and MCarlo simulations
- support for post-doc fellowship for (experimental) non-italian citizens

Possible external sources of funding: STRONG-2020 Proposal (under evaluation at EU)

Special thanks to the accelerator, research and technical division, to the DAΦNE staff and to the LNF Director

Thank you!