

The CLAS12 RICH

Marco Mirazita

- G. Fuga, V. Lucherini, D. Orecchini, A. Orlandi, P. Rossi, S. Tomassini, A. Viticchie'
 - G. Angelini, R. Montgomery, S. Pisano, M. Turisini

55th Scientific Committee Meeting – LNF, May 14, 2018

The CLAS12 RICH

at Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA

Continuos Electron Beam Accelerator Facility (CEBAF)

CEBAF Large Acceptance Spectrometer (CLAS)

Why the RICH

Kaon program at CLAS12

- A large fraction of the approved CLAS12 physics program requires good kaon identification
- flavor separation in SIDIS
- hard exclusive meson production
- exotic hybrid meson spectroscopy

CLAS12 provides good kaon ID only at low and high momentum regions

 pion production rate is one order of magnitude higher than kaon

RICH goal:

 $\pi/K/p$ identification from 3 up to 8 GeV/c and 25 degrees ~4 σ pion-kaon separation for a pion rejection factor ~ 1:500

The RICH project

- The construction of the RICH was proposed by Frascati, then involved many other INFN sections and foreign Institutions
- LNF was responsible for many aspects of the construction, from the design of the detector to test of the components, the assembly and the installation.

2011	Beginning of the R&D					
		INSTITUTIONS				
2013	Winner of "Premiale" funding from Italian	INFN				
	MIUR	Ba, Fe, Ge, LNF, RM/ISS				
2014	Construction of the first module started	Jefferson Lab (USA)				
March	Reginning of assembly at II ab	Argonne National Lab (USA)				
2017	Deginning of assertiony at Jean	Duquesne University (USA)				
Nov.	Accomply completed starting commissioning	Glasgow University (UK)				
	Assembly completed, starting commissioning	George Washington University (USA)				
2017		Kyungpook National University (Korea)				
Jan. 2018	Installation in CLAS12 and beginning of data	University of Connecticut (USA)				
	laking	Universita' Tecnica F. Santa Maria (Chile)				
2018	Starting construction of the second module					
≥ 2020	Installation of the second module	4				

The hybrid optics design

Direct photon detection:

best performance for high momentum particles

Photon detection after reflections: less demanding for low momentum particles

Configurations tested with a large scale prototype in test beams at CERN and LNF

The RICH detector

Aerogel radiator

Large tiles produced by the Budker and Boreskov Institutes of Nuclear Physics (Novosibirsk, Russia)

- Optical quality comparable with the ones produced for Belle but at higher refractive index and larger size
- thickness 2 or 3 cm
- refractive index 1.05

<Npe>

Aerogel assembly

Top section

- 2 layers 3+3 cm thickness
- 64 tiles
- mounted on the frontal closing panel

Bottom section

- 1 layer 2 cm thickness
- 38 tiles
- mounted on the two frontal mirrors

Holding system: wires and lateral pushers

The mirror system

Total surface: 6.5 m² glass 3.5 m² carbon fiber

System entirely responsibility of LNF from initial studies to select the best technology, to the design, the test and alignment tools, up to the final assembly Sandwich technique: two layers of material plus honeycomb core

- Mirrors in the acceptance
 - **10** spherical mirrors
 - o carbon fiber
 - 2 frontal mirrors
 - \circ thin glass layers
- Mirrors out of the acceptance
 - 4 lateral and 1 bottom mirrors
 - o thicker glass layers

Spherical Mirrors

Same technology as LHCb mirrors, but <u>30% improvement in the material budget</u>

Characterization measurements

- reflectivity

Characterization measurements

- surface accuracy \rightarrow angular resolution
- radius

Assembly and alignment

Planar Mirrors

- > Two thin layers of glass with Al honeycomb core: technology used in telescopes
 - 2x1.6 mm lateral and bottom: standard
 - 2x0.7 mm frontal: specifically developed for CLAS12
- > Radiation length comparable with carbon fiber at much lower costs

Characterization measurements

- surface planarity at LNF

MediaLario (Italy)

Production process improved after prototype mirror studies - imperfections level lowered to few % of

the total surface

The mirror system assembled

Photodetectors

Photomultipliers only available option for visible light detection

Several Multi-Anode PMT tested during R&D in laboratory and in test beams Selected device: <u>Hamamatsu H8500/H12700</u>

- large area (5.2x5.2 cm²)
- high packing fraction (89%)
- matrix of 64 6x6 mm² pixels
- high visible to near UV light detection efficiency
- fast response
 - gain > 10⁶

- 400 MAPMT tested in Single p.e. regime
- Gain, spe resolution, efficiency extracted for 25024 channels

Readout Electronics

The RICH readout is based on the 64 channel MAROC front end chip

- single channel adjustable preamp
- highly configurable signal shaping
- binary output after fast shaping with adjustable threshold
- leading and trailing edge time

SPE spectrum reconstructed by scanning the threshold value - typical dark current rate is 10 to 100 Hz

Compact system based on 2x and 3x tiles with adapter, ASIC and FPGA boards

Assembly of the electronics

FE electronics view

Assembly of the electronics

MAPMT view

Slow controls

- Several parameters are monitored and sent to interlocks and alarms
 - FPGA chip temperature
 - Electronic panel internal temperatures
 - Cooling air flow
 - RICH internal humidity
 - Nitrogen flow

📔 RICH SSP '	Temps	/Volt:	5 23													-	_
				FP	GA	F	:P	G	Α	te	en	J).<	<	65	0	
62.4 61	2	58.	6	59	.0	59.	7	57.	4	52.	9	59	.3	6	1.3	61.	1
	61.2	2	58.	1	56.5	5	61.3	3	59.	8	58.	4	59.	9	62	.9	
<mark>63.7</mark>	61.8		56.3		58.4		60.4		61.8		63.2		62.3		61.9		
63.7	58.	0	55.	0	57.0	3	59.	В	63.	8	62.		62	2	61	.8	
58	.3	54.:	2	53	5	58.	2	60.	1	56.	3	59	2	63	2.3		
5	59.9 ¹	50.5		54.6		58.4		58.8		54.9		57.9		61.	9		
	56.4	57.	5	57	.1	60.	9	59.	.0	62.	7	58	.8	6	2.6		
	54.2	2	56.9	9	60.9)	59.3	3	57.	7	59.	В	60.	1			
	59	9.1	57.0		60.8		58.1		57.0		57.1		59.5	_			
		57.8	51.	7	59.0)	56.	2	58.	4	55.	2	58	.2	_		
		53.	2	55	.9	59.	8	56.	6	56.	3	57	.2		Sci	ale	
		62	2.2	59.0		50.4		57.9		55.2		57.2				OB-	70
MAX FPGA T	EMP:		57.8	56	.6	58.	1	54.	7	54.	4	58	.3			69	1
66.83			55.0) . – .	52.0	,	54.9	9	54.	/ 	55.	4				1	١
			52	2.7	51.8		55.5		55.0		56.3	4					
				55.5	50	5	0	2	0,04		۵ <u>۲</u>	4					
				51	1 1	52.	。 	51.2	•	54.2	9						
	Menu				47.7	52.5	6	50	6	56	0						
					19	52.	50 1	2	53	a.							
# Fibers Cr	oppeet	od-		20	51	.7	50.	-	52.9							45	
# ribers Co	minect	eu.		30		50.4	50	3	55	4						1-3	
						53	2	53	4							OB-L	-0
							_								_		

Physics data analysis

Timing analysis Leading time vs duration (i.e. charge)

1 channel (out of 25024)

Event reconstruction

Conclusion

- After many years of work, the first RICH module has been installed in CLAS12 in January 2018
- No major failures have been reported after 1 month of tests in clean room and 4 months of physics data taking
- The analysis of the real and simulated data is underway to extract the detector performance
- The construction of the second module has started, installation in CLAS12 is foreseen by 2020

backup

RICH prototype studies at CERN

RICH prototype results

UV photons

CLAS12 RICH Resolution

Requirements	Direct	Reflected	
Max Momentum	8 GeV/c	6 GeV/c	$\sqrt{\sum_{i} (\sigma_{i}^{i})^{2}}$
σ_{ϑ} (4 σ separation)	1.4 mrad	2.5 mrad	$\sigma_{\theta} = \sqrt{\frac{2 \sigma_{i}(\sigma_{\theta})}{N}}$
Np.e. Yield	≥ 10	≥ 3	$\bigvee {}^{\bot}\mathbf{p}.\mathbf{e}.$
Resolution	Direct (mrad)	Reflected (mrad)	Minimum required number of p.e.
Emission Point	1.7	1.7	
Redout Accuracy	2.1	1.0	Validated with
Chromatic Dispertion	3.0	2.5	prototype data
Aerogel Optical Prop.	≤ 1	≤ 2	From Lab.
Mirror system		≤ 1	studies
σ ₉ (1p.e.)	4.2	3.9	

Similar single photon resolutions for the direct and reflected case A factor of ~3 less yield in the reflected case but larger angular separation \rightarrow comparable π/K rejection power

U.S. DEPARTMENT OF ENERGY Office of Science

Photon detection requirements

VS

The RICH particle ID capabilities are determined by

- the number of detected photons:
- the angular resolution of each photon:

$$\sigma_{m{ heta}} = rac{\sigma_{1pe}}{\sqrt{N_{pe}}}$$

 $\Delta \boldsymbol{\vartheta} = \boldsymbol{\vartheta}_{\boldsymbol{\mathcal{C}}}(\boldsymbol{\pi}) - \boldsymbol{\vartheta}_{\boldsymbol{\mathcal{C}}}(\boldsymbol{K})$

 N_{pe}

 σ_{1pe}

→ more photons, better resolution

 \rightarrow linear with the resolution, square root with N_{pe}

•Di	rect configuration:	8 GeV	
	Npe ≥10	$\Delta \theta$ ~5 mrae	d
•Re	flected configuration:	6 GeV	
	Npe≥3	$\Delta \theta$ ~10 mr	ad
low	ver number of p.e. , lar	ger separa	tion
Sa	me rejection power pro $\sigma_{1pe}(dir)pprox\sigma_1$	ovided that pe(refl)	:
	→Mirror system requ	irement:	
	σ _{tot} < 2 mrac	ł	
	σ _m < 0.5 mra	ad	30

Radiator

Office of Science

ENERGY

JA

- Aerogel mandatory to separate hadrons in the 2-8 GeV/c momentum range
- Solid, very light and transparent material consisting essentially of silica (SiO2)
- Very low density typically ~
 0.1-0.2 g/cm³ → n (refr.
 index) close to unity
- Rayleigh scattering dominant cause of aerogel image degradation
- Rayleigh scattering increases as λ⁻⁴
 - → collection of visible Cherenkov light → PMT

Aerogel Surface Scan

x-y axis movable table

CCD camera [ThorLabs DCU 224c] - sensitive area [5.95-4.76 mm]

- resolution [1280-1024 pixels]

- pixel size 4.65 μ m

Distributions of X & Y positions of the spot

Scan of aerogel surface

Aerogel Surface Planarity

From laser spot shits to surface gradients

$$abla_x = rac{(x - x_{mean})c_l}{2L}\cos(heta)$$
 $abla_y = rac{(y - y_{mean})c_l}{2L}$
 $L = R/\cos(heta)$

From surface gradients to surface map by linear regression

Surface map 10°

Consistent with Russian vendor planarity evaluation Validated with touch machine measurements

Mirror reflectivity

Higher reflectivity \rightarrow more photons

aver

k-1

Surface roughness: is measured at the nm scale

$$R \propto \exp\left[-\left(\frac{4\pi\sigma_r\cos\vartheta_i}{\lambda}\right)^2\right]$$

To have R>0.99 at λ =400 nm (aerogel) σ_r <3 nm

Coating material

Simulation of the propagation of the em field across the layers

Good coating process usually preserves the roughness of the substrate

D0 measurement

[[[] []]]]]

R[mm]

R[mm]

Mirror Results

All the 10 mirrors well within the specifications

Photodetectors

Photomultipliers only available option for visible light detection

On average, H12700 has superior s.p.e. response

- better efficiency
- improved resolution
- But also less uniform response due to the dynode structure

Global efficiency

RICH assembly completed

Gain Scan

High gain shaper precedes the discriminator 3.75 Volt/pC in the linear region 20-25 ns rise time

Fast Shaper Gain

FE electronic lab tests

Test of the FE tile response to:

- external and onboard programmable injector
- MAPMT dark noise
- laser in s.p.e. regime

Study the count rate as a function of the threshold

- ➤ Large region of uniform response for G≥1: possibility to compensate pixel non-homogeneity
- Small slope vs threshold : easy working point
- Measured dark rate compatible with Hamamatsu specifications

Simulations

All the relevant RICH volumes are imported in GEANT from CAD

