KLOE-2 status

55th LNF Scientific Committee Meeting May 14, 2018

March 30, 2018

"This is the end ..."

55 LNF S.C. - 14/5/2018

KLOE-2 data

Acquired $L = 5.5 \text{ fb}^{-1}$

Delivered $L = 6.8 \text{ fb}^{-1}$

Goal of 5 fb⁻¹ reached, thanks to the combined effort of the KLOE-2 Collaboration and of the DAΦNE team

Best day of Run IV

January 28th, 2018

- > 99% uptime
- 13.7 pb⁻¹ delivered
- 11.1 pb⁻¹ acquired
- $L_{peak} = 2.28 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

55 LNF S.C. - 14/5/2018

KLOE-2 roll-out

- The detector will be moved on its rails from the IP to the assembly hall with the end-caps closed
- The main steps of the roll-out are:
 - 1. disconnection of the outer part of beam-pipe
 - 2. lowering of KLOE (1500 tons)
 - 3. movement on rails
- The inner part of the beam-pipe will remain inside the detector
- The shielding concrete wall separating the DAONE hall and the assembly hall is being dismantled and will be then rebuilt

Roll-out schedule

ID	Nome attività			Tri 3 2018			Tri 4 2018			Tri 1
		mag	giu	lug	ago	set	ott	nov	dic	gen
1	DAFNE-SIDDHARTA2								1	
2	Roll out KLOE-2			٦						
3	Wall dismantling and Final Site and tooling Arrangement		1							
4	Roll-out		T							
5	Wall Structure maintenance and reassembling		*	1						
6	New IR1 installation									
7	Main support structure maintenance			-						
8	Main structure installation			1		7				
9	Y vacuum chambers, Supports procurement					-				
10	Vacuum chambers and external components installation,					-		1		
	services connection									
11	Permanent magnet quadrupoles Procurement				1			-		
12	Permanent quadrupole installation									
13	Accelerator vacuum maintenance and improvements									
14	Roll in Siddharta-2							*	1	
15	START Siddharta-2 RUN								30/11	

- We are in time with the schedule
- All operations are expected to be completed by end of June

Event size as a function of time

DAQ rate as a function of time

Whole KLOE-2 data set

- Trigger rate ~ 6 kHz
- Event size $\sim 8 9 \text{ kB}$
- Raw data volume ~ 0.5 PB/fb⁻¹

55 LNF S.C. - 14/5/2018

L [pb⁻¹]

RAW [TB]

REC [pb⁻¹]

Run-IV

1400

734

3

9

New version (DBV-38) of the data reconstruction program:

- New background filter implemented
- \Rightarrow rejects 25 30 % of the events
- Version 3.0 of the DC-IT integrated tracking
- New stream for Single Photon Trigger events implemented
- Tests for a new stream of γγ physics events

Run-II

1620

867

1018

Run-I

800

457

30

Run-III

1680

943

706

Reconstruction summary

- 981 pb⁻¹ reconstructed with DBV-38 since March 21st, 2018
 ⇒ ~ 20 % of the whole KLOE-2 data set
- New background filter + reconstruction optimization
 ⇒ gain a factor of 2 in reconstruction rate:

 $\sim 20 \text{ pb}^{-1}/\text{ day}$

• At this rate the first round of all KLOE-2 data reconstruction will be completed in ~ 9 months

Event Counters

Data reconstructed with DBV-38

• Event counters, normalized to Very Large Angle Bhabha's

Event counters

P.Gauzzi

Monte Carlo

- MC all_phys (main φ decays + background) production started together with Datarec with DBV-38
- Checks with Golden Bhabha's: data-MC comparison

Publications

Combination of σ_{had} meas. and a_{μ} determination at $0.10 < s < 0.95 \text{ GeV}^2$	JHEP1803(2018)173
Measurement of charge asymmetry of $K_S \rightarrow \pi ev$	Paper ready to be submitted to JHEP
Dark Photon search: updated limit on $e^+e^- \rightarrow U\gamma \rightarrow \mu^+\mu^- \gamma$, and combined $\pi^+\pi^-\gamma$ and $\mu^+\mu^- \gamma$	Final result – paper in preparation

Ongoing analyses				
$\gamma\gamma ightarrow \pi^0$	KLOE-2 data			
$K_{S} \rightarrow \pi ev K_{L} \text{ crash; } K_{S} \rightarrow \pi^{+}\pi^{-} K_{L} \rightarrow \pi^{+}\pi^{-}$	KLOE-2 data			
$K_S \rightarrow 3\pi^0$	KLOE-2 data – preliminary @ EPS 17			
T/CPT tests with $\phi \rightarrow K_S K_L \rightarrow 3\pi^0 \pi ev, \pi\pi \pi ev$	KLOE data – PhD Thesis (preliminary)			
$Br(K_S \rightarrow \pi ev)$	KLOE data			
${ m K}_{ m S} ightarrow \pi^+\pi^-\pi^0$	KLOE data			
B-boson search in $\phi \rightarrow \eta \pi^0 \gamma$	KLOE / KLOE-2 data			
$\eta \to \pi^0 \gamma \gamma$ - χPT golden mode	KLOE / KLOE-2 data			
$\eta \rightarrow \pi^+ \pi^-$ (P and CP viol.)	KLOE / KLOE-2 data			
$e^+e^- \rightarrow \omega \gamma_{\rm ISR}$	KLOE data			

55 LNF S.C. - 14/5/2018

 $\epsilon < (6 - 1.94) \times 10^{-7}$ above 650 MeV

- Full analysis chain run on KLOE-2 data (IT contributing to the tracks)
- K_S semileptonic decay tagged with K_L crash (K_L interaction in the calorimeter)
- Vertex selected in the fiducial volume
- $300 < M(\pi\pi) < 490 \text{ MeV}$
- TOF in e and π hypotheses

HET analysis

Efficiency measurements:

- Relative efficiencies of the different scintillators by measuring the Bhabha scattering flux, by moving the HET detectors with respect to the beams
- Efficiencies normalized to the Bhabha flux on the long scintillator
- Factor of 2 improvement with the new discriminators (installed at the end 2016)
- HET counting rate dominated by Bhabha scattering ⇒ measurement of the Bhabha cross-section at very low angle Validation of BBBREM generator in progress

Multivariate Analysis on Double Arm (DA) and Single Arm (SA) samples (L = 550 pb⁻¹):

- No significant evidence of $\gamma\gamma \rightarrow \pi^0$ tagged events both for DA and SA samples
- Analysis based on info of the two EMC clusters associated to π⁰ candidates
- Future plans:
 - Reconstruction of a new sample of 500 pb⁻¹
 of data taken with new discriminators
 - New data reduction on the analyzed samples, exploiting the whole event information

Red : events in the bckg region Blue: events in the sig region, MLP > 0.9

T and CPT test with KLOE data

[JHEP 10 (2015) 139

NPB 868 (2013) 102]

T and CPT observables

First test of T and CPT in transitions with neutral kaons

- $\phi \rightarrow K_S K_L \rightarrow \pi e^{\pm} v \ 3\pi^0 \text{ and } \pi^+ \pi^- \pi e^{\pm} v$ (L=1.7 fb⁻¹)
- Selection efficiencies estimated from data with 4 independent control samples

- P and CP violating, Br expected of order 10⁻²⁷ in the SM
- Detection at any accessible level would be signal of CP violation beyond the SM
 Best limit Br<1 3×10⁻⁵ @ 90% C L (L = 350 pb⁻¹) [KLOF PLB6060]

Best limit Br<1.3×10⁻⁵ @ 90% C.L. (L = 350 pb⁻¹) [KLOE, PLB606(2005)276] [scaling to 8 fb⁻¹ \Rightarrow 2.7×10⁻⁶]

After cut: 129 < M_{tr} < 149 MeV

- B-boson search: Leptophobic Dark Force mediator coupled to baryon number with the same quantum numbers of the ω(782) ⇒ I^G=0⁻
- Dominant decay ($m_B < 600 \text{ MeV}$): $B \rightarrow \pi^0 \gamma$ \Rightarrow Look for resonances in $\pi^0 \gamma$ invariant mass

 $\phi \rightarrow \eta B, B \rightarrow \pi^0 \gamma \Rightarrow \eta \pi^0 \gamma$ final state

(also $\eta \rightarrow B\gamma \Rightarrow \pi^0 \gamma \gamma$, and $e^+ e^- \rightarrow \pi^0 \gamma \gamma_{ISR}$)

21

- KLOE + KLOE-2 data sample: 8 fb⁻¹ ⇒ 2.4 × 10¹⁰ φ mesons produced, the largest sample ever collected at the φ(1020) peak
- Last SC Findings & Recommendations: "The SC recommends that the KLOE-2 Collaboration prepares a plan for data preservation"
- CERN experts contacted through the LNF Director (Sünje Dallmeier-Tiessen and Salvatore Mele)
- The idea: "Data Preservation for KLOE would be an excellent test bed as the data set is not gigantic and the basic idea would be to have a Rootcompatible set of ntuples with reconstructed data."
- February 20th @LNF: First meeting with Sünje Dallmeier-Tiessen and KLOE-2 detector, offline, and computing experts
- First step: Change present DST Data output format to ROOT- compatible (with the assistance of experts: Axel Naumann and Federico Carminati)
- First tests planned before summer

• End 2018 – Beginnning of 2019:

Complete first round of KLOE-2 data reconstruction + production of ~ 1 fb⁻¹ of all_phys Monte Carlo

• Immediately after:

Start a second round of data reconstruction, with an improved version of Datarec Implement the ROOT output instead of the present DST format

- October 2018:
 - Preliminary results on the 5 prompt photon sample ($\eta \rightarrow \pi^0 \gamma \gamma$ and B-Boson search) on old data
- End 2018:
 - $\gamma\gamma \rightarrow \pi^0$: analysis of the second sample of 500 pb⁻¹,

Bhabha cross-section measurement at very low angle with HET

- $K_S \rightarrow 3\pi^0$: preliminary result on KLOE-2 data
- $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: update of the analysis on KLOE-2 data
- T, CPT tests with $\phi \to K_S K_L \to 3\pi^0 \pi ev$, $\pi\pi \pi ev$: update of the analysis on

KLOE data

- Beginning of 2019:
 - $K_s \rightarrow \pi ev$: update of the analysis of KLOE-2 data
 - $\eta \rightarrow \pi^+\pi^-$: preliminary result on old data + first look at KLOE-2 data

55 LNF S.C. - 14/5/2018

KLOE-2 Physic	KLOE-2 Coll., EPJC68(2010)619 http:// agenda.infn.it/event/kloe2ws Proceedings: EPJ WoC 166 (2018)				
Kaon Physics: • CPT and QM tests with kaon interferometry • Direct T and CPT tests using entanglement • CP violation and CPT test: $K_S \rightarrow 3\pi^0$ direct measurement of Im(ϵ'/ϵ) (lattice calc. improved) • CKM V _{us} : K_S semileptonic decays and A_S (CP and CPT test) $K_{\mu3}$ form factors, K_{13} radiative corrections • $\chi pT : K_S \rightarrow \gamma \gamma$ • Search for rare K_S decays	Dark force searches: • Improve limits on - Uy associate production $e^+e^- \rightarrow U\gamma \rightarrow \pi\pi\gamma$, $\mu\mu\gamma$ - Higgsstrahlung: $e^+e^- \rightarrow Uh' \rightarrow \mu^+\mu^- + miss.$ energy • Leptophobic B boson search: $\phi \rightarrow \eta B, B \rightarrow \pi^0\gamma, \eta \rightarrow \gamma\gamma$ $\eta \rightarrow B\gamma, B \rightarrow \pi^0\gamma, \eta \rightarrow \pi^0\gamma\gamma$ • Search for U invisible decays Light meson Physics: • η decays, ω decays • Transition Form Factors				
 Hadronic cross section: ISR studies with 3π, 4π final states F_π with increased statistics Measurement of a_μ^{HLO} in the space-like region using Bhabha process 	C,P,CP violation: improve limits on $\eta \rightarrow \gamma \gamma \gamma, \pi^+\pi^-, \pi^0\pi^0, \pi^0\pi^0\gamma$ Improve $\eta \rightarrow \pi^+\pi^-e^+e^-$ $\chi PT: \eta \rightarrow \pi^0\gamma\gamma$ Light scalar mesons: $f_0(500)$ in $\phi \rightarrow K_S K_S \gamma$ $\gamma \gamma$ Physics: $\gamma \gamma \rightarrow \pi^0$ and π^0 TFF $e^+e^- \rightarrow \pi^0\gamma\gamma_{ISP}$ (π^0 TFF)				
P.Gauzzi Hadron 2017 - Sept	• Search for axion-like particles 25				

- KLOE-2 data taking succesfully closed on March 30 Luminosity goal reached ⇒ acquired L = 5.5 fb⁻¹ KLOE + KLOE-2 sample ⇒ ~ 8 fb⁻¹ at the φ peak
- Detector roll-out in progress

... of course this is not the end of KLOE-2

- Now the effort of the Collaboration is focused on Data reconstruction and simulation
- First round of data reconstruction expected by the end of 2018 beginning of 2019
- Analysis short-term plans defined

Spare

P.Gauzzi

Combination of \sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma(\gamma))^2

55 LN

Combination of three KLOE measurement:

- 1. PLB670(2009)285 KLOE08
- 2. PLB700(2011)102 KLOE10
- 3. PLB720(2913)336 KLOE12
- Improved uncertainties
- Correlation of statistic and systematic uncertainties

JHEP1803(2018)173

Based on the two most energetic clusters in EMC

- Reject events at small polar angle ⇒ machine bckg
- Events in the overlap Barrel-Endcap region ⇒ Mach.bcgd. + cosmics
- Events in the diagonal \Rightarrow cosmics

- Overall rejection factor of ~ 25%,
- Small decrease in efficiency for good events (few %)

55 LNF S.C. - 14/5/2018

- Invisible decay of U-boson
- Signature: monochromatic photon
- Single Photon Trigger implemented in Nov. 2016 with 350 MeV threshold (on the barrel calorimeter)
 ⇒ M_U < 570 MeV
- $\sim 2 \text{ fb}^{-1}$ collected with SPT
- $\sigma \sim 1/s$, ~ 100 times higher than at B-factories
- New stream implemented in Datarec
- Problem: machine bckg. rejection

U

 $q_e(=\epsilon e)$

ALPs at KLOE-2

- Light spin 0 (scalars or pseudoscalars) ⇒ Axion-Like Particles
- Generalization of QCD axions, with arbitrary mass or couplings to other particles [Marciano et al., PRD94(2016)115033] (a)
- Possible explanation of the $(g-2)_{\mu}$ discrepancy
- KLOE can set limits on the processes:

- $e^+e^- \rightarrow \gamma^* \rightarrow a\gamma$, with $a \rightarrow \gamma\gamma$

$$\sigma_{a\gamma}(\sqrt{s}=1~{
m GeV},m_a=150~{
m MeV})=9~{
m pb}\left(rac{g_{a\gamma\gamma}}{10^{-2}~{
m GeV}}
ight)^2$$

KLOE region

Expected with 5 fb⁻¹ N($a \rightarrow \gamma \gamma$) ~ 400 – 4×10⁴ evts. ($g_{a\gamma\gamma} \sim 10^{-3} - 10^{-2} \text{ GeV}^{-1}$)

$$- e^+e^- \rightarrow e^+e^- a \quad (\gamma^*\gamma^* \rightarrow a)$$

 $\sigma_{eea}(\sqrt{s} = 1 \text{ GeV}, m_a = 150 \text{ MeV}) = 31 \text{ pb}\left(rac{g_{a\gamma\gamma}}{10^{-2} \text{ GeV}}
ight)$

Expected N(*eea*) ~
$$1.5 \times 10^3 - 1.5 \times 10^5$$
 evts.

• Invariant mass of e^+e^- and transverse momentum

Good agreement between Integrated Tracking and DC only