55th Scientific Committee

NA62 results and perspectives

<u>Silvia Martellotti</u> on behalf of the NA62-Frascati group *Frascati 2018, May 14*th

Outline

Theoretical introduction to the $K \rightarrow \pi v v$ rare decays

NA62 experiment at the CERN SPS

- Aim and strategy for the BR(K⁺ $\rightarrow \pi^+ \nu \nu$) measurement
- Results with 2016 data
- Frascati group activities and responsibilities
- Broader physics program
- Prospects

SM theoretical framework

The $K^+ \rightarrow \pi^+ \nu \nu$ decay is extremely suppressed

Flavor-changing neutral current quark transition $s \rightarrow dvv$.

Forbidden at tree level, dominated by short-distance dynamics (GIM mechanism)

Is characterized by a theoretical cleanness in the SM prediction of the BR($K^+ \rightarrow \pi^+ \nu \nu$): loops and radiative corrections are under control.

Highly suppressed & Very well predicted Excellent laboratory complementary to LHC

Stringent test of the SM and possible evidence for New Physics

New Physics from $K \rightarrow \pi \nu \nu$ decays

Measurement of BR of charged ($K^+ \rightarrow \pi^+ \nu \nu$) and neutral ($K_L \rightarrow \pi^0 \nu \nu$) modes can determine the **unitarity triangle** independently from B inputs

and can discriminate among NP scenarios:

Belle @ 90% CL 40 0.8 $10^6 \times \mathrm{BR}(B^+ \to K^{*+} \nu \bar{\nu})$ 30 0.6 0.4 20 0.2 0.2 10 E949 @ 1σ 0 30 10 20 0 $10^{11} \times \mathrm{BR}(K^+ \to \pi^+ \nu \bar{\nu})$

 $K \rightarrow \pi v v$ is uniquely sensitive to high mass scales

Past measurement and prediction

Current theoretical prediction:

BR(K⁺ $\rightarrow \pi^+ \nu \nu$)_{SM} = (8.4 ± 1.0) x 10⁻¹¹

 $BR(K_L \rightarrow \pi^0 v v)_{SM} = (3.4 \pm 0.6) \times 10^{-11}$

A.J. Buras, D.Buttazzo, J. Girrbach-Noe and R.Knegjens arXiv:1503.02693

Main contribution to the errors comes from the uncertainties on the SM input parameters

Experimental status:

$$BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}$$

Only measurement obtained by E787 and E949 experiments at BNL with **stopped** kaon decays (7 candidates)

Gap between theoretical precision and large experimental error motivates a strong experimental effort. Significant new constraints can be obtained.

Neutral decay $K_L \rightarrow \pi^0 v v$ has never been measured

NA62 GOAL: measure BR($K^+ \rightarrow \pi^+ \nu \nu$) with 10% accuracy O(100) SM events + control of systematics at % level

Kaon at CERN SPS

The **CERN-SPS secondary beam line** already used for the NA48 experiment can deliver the required K⁺ intensity

- In the North Area the SPS extraction line is providing a secondary charged hadron beam
- 400 GeV/c primary proton
 beam
- 3 x 10¹² protons/pulse
- 40 cm beryllium target
- 75 GeV/c unseparated
 hadrons beam: π⁺, K⁺ (6%),
 - **protons** (Δp/p ± 1%)
- 4.8 x 10¹² K⁺ decays/year

NA62 Experiment

NA62 Goal

Design criteria: kaon intensity, signal acceptance, background suppression

Kaons with high momentum. **Decay in flight technique**.

Signal signature: K^+ track + π^+ track

Backgrounds

Decay	BR	Main Rejection Tools
$K^+ \to \mu^+ \nu_\mu(\gamma)$	63%	μ -ID + kinematics
$K^+ \to \pi^+ \pi^0(\gamma)$	21%	γ -veto + kinematics
$K^+ \to \pi^+ \pi^+ \pi^-$	6%	multi-track + kinematics
$K^+ \to \pi^+ \pi^0 \pi^0$	2%	γ -veto + kinematics
$K^+ \to \pi^0 e^+ \nu_e$	5%	$e\text{-ID} + \gamma\text{-veto}$
$K^+ \to \pi^0 \mu^+ \nu_\mu$	3%	μ -ID + γ -veto

Key features

- O(100 ps) Timing between sub-detectors
- O(10⁴) Background suppression from kinematics
- O(10⁷) μ -suppression (K⁺ $\rightarrow \mu^+ \nu$)
- O(10⁷) γ -suppression (from K⁺ $\rightarrow \pi^{+}\pi^{0}, \pi^{0}\rightarrow\gamma\gamma$)

Analysis Strategy

Most discriminating variable: $m_{miss}^2 = (P_{K+} - P_{\pi+})^2$

Where the daughter charged particle is assumed to be a pion

Theoretical m²_{miss} distribution for signal and backgrounds of the main K⁺ decay modes: (signal is multiplied by a factor 10¹⁰).

2 signal regions, on each side of the $K^+ \rightarrow \pi^+ \pi^0$ peak (to eliminate 92% of the K^+ width)

Main background sources:

- $K^+ \rightarrow \pi^+ \pi^0$, $K^+ \rightarrow \mu^+ \nu$ non gaussian resolution and radiative tails
- $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ non gaussian resolution tails
- decays with neutrino in final state

NA62 Timescale

2016: 40% of nominal intensity: 13 x 10¹¹ proton on target $\sim 1 \times 10^{11} \text{ K}^+$ decays useful for $\pi \nu \nu$

2017: 60% of nominal intensity: 20 x 10¹¹ proton on target > 3 x 10¹² K⁺ decays collected

2018 data taking started in the same conditions of 2017 with optimized data quality monitoring

NA62: Beam ID & Tracking

Beam ID & Tracking

- **KTAG:** Differential Čerenkov counter. **σ**_t **~70 ps, efficiency > 99%.**
- **GTK:** GigaTracKer Spectrometer. $\sigma_t \sim 100 \text{ ps}, \sigma_{dx,dy} \approx 0.016 \text{ mrad}, \Delta P/P < 0.4\%$.

NA62: Secondary ID & Tracking

Beam ID & Tracking

- **KTAG:** Differential Čerenkov counter. **σ**_t **~70 ps, efficiency > 99%.**
- **GTK:** GigaTracKer Spectrometer. $\sigma_t \sim 100 \text{ ps}, \sigma_{dx,dy} \approx 0.016 \text{ mrad}, \Delta P/P < 0.4\%$.

Secondary particle ID & Tracking

- **STRAW:** Spectrometer with STRAW tubes. $\sigma_t \sim 6 \text{ ns}$, $\sigma_{dx,dy} \sim 130 \mu m$.
- **RICH:** Ring Imaging Cherenkov detector. μ/π separation ~ 10⁻², σ_t of a ring < 100 ps.

NA62: Muon Veto System

Beam ID & Tracking

- **KTAG:** Differential Čerenkov counter. **σ**_t **~70 ps, efficiency > 99%.**
- **GTK:** GigaTracKer Spectrometer. $\sigma_t \sim 100 \text{ ps}, \sigma_{dx,dy} \approx 0.016 \text{ mrad}, \Delta P/P < 0.4\%$.

Secondary particle ID & Tracking

- **STRAW:** Spectrometer with STRAW tubes. $\sigma_t \sim 6 \text{ ns}$, $\sigma_{dx,dy} \sim 130 \mu m$.
- **RICH:** Ring Imaging Cherenkov detector. μ/π separation ~ 10⁻², σ_t of a ring < 100 ps.

Muon Veto

MUV3: Scintillator hodoscope. σ_t ~500 ps, efficiency ~99.5%.

MUV1/2: Hadronic calorimeters for the μ/π separation. Cluster reco at ~20 ns from T_{track}.

NA62: Photon Veto System

Photon Veto

LKr: NA48 LKr Calorimeter (1 <θ γ <8.5 mrad) also for PID. σ_t ~500 ps (E > 3 GeV), σ_t ~1 ns

(hadronic and MIP clusters), $\sigma_{dx,dy}$ ~1 mm

- LAV: Large Angle Veto. 12 stations (8.5 $<\theta\gamma$ <50 mrad). 4 or 5 rings of lead glass crystals read out by PMTs. $\sigma_t \sim 1 \text{ ns}, 10^{-3} \text{ to } 10^{-5} \text{ inefficiency (down to } 150 \text{ MeV}).$
- **IRC/SAC:** Inner Ring Calorimeter and Small Angle Calorimeter ($\theta\gamma$ <1 mrad). Shashlik calorimeters. Lead and plastic scintillator plates. σ_t < 1 ns, 10⁻⁴ inefficiency.

LNF responsibilities in NA62

Large Angle (LAV) and Small Angle (SAV) photon veto detectors

- Coordination of the photon veto system (fully constructed at LNF, calibrated and commissioned by Frascati group)
- Data quality monitoring and performance evaluation
- Experts support during data taking

L1 Trigger streams

- Development and optimization of algorithms; performance monitoring
- Experts support during data taking

Run coordination

Coordination of hidden sector analysis

PHYSICISTS: Antonella Antonelli, Gaia Lanfranchi, Gianpaolo Mannocchi, Silvia
 Martellotti, Matteo Martini, Matthew Moulson, Tommaso Spadaro.
 Associates: Georgi Georgiev, Venelin Kozhuharov (Sofia).
 TECHNICIANS: Rosario Lenci, Vincenzo Russo, Sauro Valeri, Tania Vassilieva, Giovanni
 Corradi, Diego Tagnani, Cesidio Capoccia, Emilio Capitolo.

2016 Data

First data declared good for $\pi\nu\nu$. 4 weeks of data taking. ~55000 good spills

- Bad data based on detector performances identified on spill by spill basis
- Signal selection tuned on MC, 10% PNN data, control data
- The analysis is mostly cut based

Blind analysis procedure: signal and control regions masked throughout the analysis

Kinematic selection of signal regions

Photon rejection

Events are rejected in case of coincidence between decay time and signals (±3-5 ns) in the LKr, LAV, SAC, IRC or hodoscope not associated to the π^+

The expected rejection is obtained with an estimate based on single-photon efficiencies

Fraction of surviving $K^+ \rightarrow \pi^+\pi^0$ (15 – 35 GeV momentum range) : ~2.5 \cdot 10⁻⁸

Data after selection

Single Event Sensitivity (SES)

Number of K^+ decays	$N_K = (1.21 \pm 0.02) \times 10^{10}$	
Acceptance $K^+ \to \pi^+ \nu \bar{\nu}$	$A_{\pi\nu\nu} = 4.0 \pm 0.1$	
PNN trigger efficiency	$\epsilon_{trig} = 0.87 \pm 0.2$	
Random Veto	$\epsilon_{RV} = 0.76 \pm 0.04$	
SES	$(3.15 \pm 0.01_{stat} \pm 0.24_{syst}) \cdot 10^{-10}$	
Expected SM $K^+ \to \pi^+ \nu \bar{\nu}$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$ -	Error on the

Background estimation

Summary of expected events

Process	Expected events in R1+R2
$K^+ \to \pi^+ \nu \bar{\nu} \ (SM)$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$
Total Background	$0.15\pm0.09_{\rm stat}\pm0.01_{\rm syst}$
$K^+ \to \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007_{stat} \pm 0.006_{syst}$
$K^+ \to \mu^+ \nu(\gamma)$ IB	$0.020 \pm 0.003_{stat} \pm 0.003_{syst}$
$K^+ \to \pi^+ \pi^- e^+ \nu$	$0.018^{+0.024}_{-0.017} _{stat} \pm 0.009_{syst}$
$K^+ \to \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001_{stat} \pm 0.002_{syst}$
Upstream Background *	$0.050^{+0.090}_{-0.030} _{stat}$

* The upstream background (π^+ from a upstream decays or beam particle interactions in GTK) might be relevant. In 2016 data analysis tight geometrical cuts are employed to keep it under control causing up to 30-40% signal acceptance reduction

- In the final part of 2017 data-taking a copper plug was inserted in to the last dipole to mitigate this issue
- Upstream background will be further reduced when a new final collimator that covers a much larger area in the transverse plane is installed in mid-June 2018.

Preliminary Results

Event Observed	1
SES	$(3.15 \pm 0.01_{stat} \pm 0.24_{syst} \cdot 10^{-10})$
Expected Background	$0.15 \pm 0.09_{stat} \pm 0.01_{syst}$
Expected SM $K^+ \to \pi^+ \nu \bar{\nu}$	$0.267 \pm 0.001_{stat} \pm 0.020_{syst} \pm 0.032_{ext}$

$$\frac{100}{2} BR(K^+ \to \pi^+ \nu \bar{\nu}) < 11 \times 10^{-10} @ 90\% CL$$
$$BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @ 95\% CL$$

 $BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (0.84 \pm 0.10) \times 10^{-10}$ $BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (1.73^{+1.15}_{-1.05}) \times 10^{-10} \text{ BNL E949/E787 Kaon Decay at Rest}$

Present result is from cut based analysis

Full probability based analysis is under development

Conclusions

The new NA62 decay in flight technique to measure BR(K⁺ $\rightarrow \pi^+ \nu \nu$) works!

- 1 event observed in 2016 data
- BR(K⁺ $\rightarrow \pi^+ \nu \nu$) < 14 x 10⁻¹⁰ @ 95% CL

Processing of the 2017 data is ongoing

- 20 times more than the present statistics
- upstream background reduction expected
- improvements on reconstruction efficiency

2018 data taking ongoing

- studies to improve signal acceptance ongoing (MVA approach)

 $\sim 20 \; \text{SM} \; \text{K}^{\text{+}} \longrightarrow \pi^{\text{+}} \nu \nu$ events expected before LS2

A compelling broader physics program will be addressed.

Exotic searches at NA62

Heavy Neutrinos (Neutrino portal HN') with mass up to the D meson

• $HN' \rightarrow \pi e, HN' \rightarrow \pi \mu$

Dark Photon (Vector Mediator A') with mass below (above) 600 MeV

A'→ e⁺e⁻, A'→μ⁺μ⁻

Trigger bandwidth for final states other than " π^+ + E_{miss} " limited. Requiring 1 track, muon veto, and Emiss $\neq 0$ at L0 reduces event rate from 15 MHz to **750 kHz**, including calibration and control triggers, little free bandwidth. **Parallel trigger masks have been developed**: high efficiency & negligible efficiency reduction for the main stream

NA62 potential for A' visible decays

~3 10¹⁷ POT acquired in 2016/17 with di-muon parasitic trigger, 5 10¹⁶ POT with ee trigger

Assume 10¹⁸ 400-GeV POT :

Study DP production from interaction onto target search for decay to ee, μμ in NA62 fiducial volume, account for geometrical acceptance and trigger efficiency, assume zero-background.

Sensitivity expected to be higher than shown:

- including direct QCD production of A'
- Including A' production in the dump (here, only target)

NA62 potential ALP visible decays

Can act as a compact beam dump if ~11 λ_l Cu-based beam-defining collimator (TAX) is closed

 Study Axion Like Particle (ALP) production from interaction onto TAX, search must be performed in real beam-dump mode

Assume 10¹⁸ 400-GeV POT :

search for ALP-decay to γγ in NA62 fiducial volume, account for geometrical acceptance assume zerobackground.

Analysis of 2017 data for ~5x10¹⁵ POT's taken in "dump mode" in progress.... 1 day of run in real beam-dump mode (~ 1.3 10¹⁶ POT's) is enough for improvements

Search for $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow$ invisible

Search for an invariant mass peak around A' mass

Data from 2016:~1.5 10¹⁰ K⁺ (4% of statistics)

- Sensitivity for masses below the π⁰ mass
- Signal signature: 1 track, 1 photon
 + missing energy
- Search parasitic to πvv, trigger
 based on "1 track" + small
 forward energy
- Dominant background from $\pi^0 \rightarrow \gamma \gamma$ with
 - 1 photon missing

No signal observed, 90% CL UL within expected statistical uncertainty band

KLEVER experiment

Feasibility study of an experiment to measure BR($K_{L} \rightarrow \pi^{0}vv$) at the SPS

400-GeV SPS proton beam incident on Be target, beam intensity of 2×10^{13} pot/16.8 s. Intensity 6x higher than NA62: Target area and transfer lines will require upgrades.

Main detector /veto systems: UVC Upstream veto calorimeter LAV 1-25 Large angle vetoes (25 stations) MEC Main electromagnetic calorimeter SAC Small angle calorimeter CPV Charged particle veto

Target sensitivity: 5 years starting in Run 4 60 SM $K_L \rightarrow \pi^0 vv$ with S/B ~ 1 δ BR/BR(π 0vv) ~ 20%

Conclusion and What Next

A compelling broader physics program will be addressed.

- Data from 2016-17 runs being analyzed, feasibility studies / first results
- Closed-TAX mode, present statistic ~6 x 10¹⁵ POT's
- Background estimate for future operation in beam-dump mode
- Low-bandwidth triggers parasitic to πνν

Running after 2018 to be approved

condition for ultimate sensitivity under evaluation

LNF is playing an important role:

- in the 2018 ongoing data taking
- in the analysis of 2017 and 2018 data
- in the future plans beyond NA62

Perspectives from NA62 and beyond for exotic searches and KLEVER project studies are part of discussion in CERN Physics Beyond Collider Working Groups