EuPRAXIA@SPARC_LAB

Massimo.Ferrario@lnf.infn.it

On behalf of the EuPRAXIA@SPARC_LAB team

LNF Scientific Committee – May 14, 2018

D. Alesini^a, M. P. Anania^a, M. Artioli^b, A. Bacci^c, S. Bartocci^d, R. Bedogni^a, M. Bellaveglia^a, A. Biagioni^a, F. Bisesto^a, F. Brandi^e, E. Brentegani^a, F. Broggi^c, B. Buonomo^a, P. Campana^a, G. Campogiani^a, C. Cannaos^d, S. Cantarella^a, F. Cardelli^a, M. Carpanese^f, M. Castellano^a, G. Castorina^g, N. Catalan Lasheras^h, E. Chiadroni^a, A. Cianchiⁱ, R. Cimino^a, F. Ciocci^f, D. Cirrincione^j, G. A. P. Cirrone^k, R. Clementi^a, M. Coreno^l, R. Corsini^h, M. Croia^a, A. Curcio^a, G. Costa^a, C. Curatolo^c, G. Cuttone^k, S. Dabagov^a, G. Dattoli^f, G. D'Auria^l, I. Debrot^c, M. Diomede^{a,g}, A. Drago^a, D. Di Giovenale^a, S. Di Mitri¹, G. Di Pirro^a, A. Esposito^a, M. Faiferri^d, M. Ferrario^a, L. Ficcadenti^g, F. Filippi^a, O. Frasciello^a, A. Gallo^a, A. Ghigo^a, L. Giannessi^{f,l}, A. Giribono^a, L. A. Gizzi^e, A. Grudiev^h, S. Guiducci^a, P. Koester^e, S. Incremona^a, F. Iungo^a, L. Labate^e, A. Latina^h, S. Licciardi^f, V. Lollo^a, S. Lupi^g, R. Manca^d, A. Marcelli^{a,m,n}, M. Marini^d, A. Marocchino^a, M. Marongiu^g, V. Martinelli^a, C. Masciovecchio^l, C. Mastino^d, A. Michelotti^a, C. Milardi^a, M. Migliorati^g, V. Minicozziⁱ, F. Mira^g, S. Moranteⁱ, A. Mostacci^g, F. Nguven^f, S. Pagnutti^f, L. Palumbo^g, L. Pellegrino^a, A. Petralia^f, V. Petrillo^o, L. Piersanti^a, S. Pioli^a, D. Polese^d, R. Pompili^a, F. Pusceddu^d, A. Ricci^m, R. Ricci^a, R. Rochow^l, S. Romeo^a, J. B. Rosenzweig^p, M. Rossetti Conti^o, A. R. Rossi^c, U. Rotundo^a, L. Sabbatini^a, E. Sabia^f, O. Sans Plannell^a, D. Schulte^h, J. Scifo^a, V. Scuderi^k, L. Serafini^c, B. Spataro^a, A. Stecchi^a, A. Stella^a, V. Shpakov^a, F. Stellatoⁱ, P. Tomassini^e, E. Turco^d, C. Vaccarezza^a, A. Vacchi^j, A. Vannozzi^a, G. Vantaggiato^e, A. Variola^a, S. Vescovi^a, F. Villa^a, W. Wuensch^h, A. Zigler^q, M. Zobov^a

^a INFN - Laboratori Nazionali di Frascati, via E. Fermi 40, 00044 Frascati, Italy

^b ENEA - Centro Ricerche Bologna, Via Martiri Monte Sole 4, 40129 Bologna, Italy

^c INFN - Milano section, Via Celoria 16, 20133 Milan, Italy

^d Universitá degli Studi di Sassari, Dip. di Architettura, Design e Urbanistica ad Alghero, Palazzo del Pou Salit - Piazza Duomo 6, 07041 Alghero, Italy

^e Intense Laser Irradiation Laboratory (ILIL), Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche (CNR), Via G. Moruzzi 1, 56124 Pisa, Italy and INFN Pisa section, Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy

^f ENEA - Centro Ricerche Frascati, Via E. Fermi 45, 00044 Frascati, Italy

^g Sapienza University of Roma and INFN, P.le Aldo Moro 2, 00185 Rome, Italy

h CERN, CH-1211 Geneva 23, Switzerland

ⁱ Universitá degli Studi di Roma Tor Vergata and INFN, Via della Ricerca Scientifica 1, 00133 Rome, Italy

^j INFN - Trieste section, Via Valerio 2, 34127 Trieste, Italy

^k INFN - Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania, Italy

¹ Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy

^m RICMASS, Rome International Center for Materials Science Superstripes, 00185 Rome, Italy

ⁿ ISM-CNR, Basovizza Area Science Park, Elettra Lab, 34149 Trieste - Italy

^o Universitá degli Studi di Milano and INFN, Via Celoria 16, 20133 Milan, Italy

^p Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA

⁹ Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

http://www.lnf.infn.it/sis/preprint/detail-new.php?id=5416

SPARC_LAB HB photo- injector

X-band Linac and High Power Laser

Plasma WakeField Acceleration – External Injection

Capillary discharge at SPARC_LAB

Undulators

KYMA Δ udulator at SPARC_LAB: λ =1.4 cm, K1

Photon beam line

Coherent Imaging @ EuSPARC/EuPRAXA

2 key issues: brilliance and coherence of the FEL radiation

1 experimental station performing coherent imaging experiments

Many applications, ranging from biological systems to condensed matter physics

Coherent Diffraction Pattern

Water Window Coherent Imaging of biological systems

Energy region between oxygen and carbon K-edge 2D and 3D images of biological samples will be obtained

viruses, cells, organelles, protein fibrils...

Metal-insulating transitions

Colossal magnetoresistance

Skyrmions, spintronics

Nanoparticles and plasma

Condensed-matter

phenomena

High Temperature superconductors

Colossal Magnetoresistance 3d Orbital Types

GPT => Elegant=> Architect => Elegant=> Genesis

Figure 5.1: Start to end simulation results for the 200 pC bunch for the X-band case: evolution along the injector of the energy (E red line) and energy spread ($\Delta E/E$ red dotted-line) and longitudinal bunch length (σ_z blue line).

Figure 5.2: Start to end simulation results for the 200 pC bunch for the X-band case: evolution along the injector of the electron beam transverse normalised emittance (ε_{n_x} red line, ε_{n_y} red dotted-line) and spot sizes (σ_x blue line, σ_y blue dotted-line).

Figure 6.10: Upper windows Q = 100 pC, lower windows Q = 200 pC. (a) in red I(A), in blue E(MeV), (b) emittance (mm mrad) and energy spread (%) vs the electron beam coordinate s (µm).

Figure 6.12: Case (a) at 100 pC : (a) power growth P(W) vs. the coordinate along the undulator z (m). (b) contour level of the radiated power in the (s, z) plane, with s (μ m) coordinate along the electron beam. (c) Power and (d) spectral density at z = 15 m.

_	

	Units	Full RF case	LWFA case	PWFA case
Electron Energy	GeV	1	1	1
RMS Energy Spread	%	0.05	2.3	1.1
Peak Current	kA	1.79	2.26	2.0
Bunch Charge	pC	200	30	30
RMS Bunch Length	μm (fs)	16.7 (55.6)	2.14 (7.1)	3.82 (12.7)
RMS normalized	mm mrad	0.5	0.47	1.1
Emittance				
Slice Length	μm	1.66	0.5	1.2
Slice Charge	pC	6.67	18.7	8
Slice Energy Spread	%	0.02	0.03	0.034
Slice normalized	mm mrad	0.35/0.24	0.45/0.465	0.57/0.615
Emittance (x/y)				
Undulator Period	mm	15	15	15
Undulator Strength $K(a_w)$		0.978 (0.7)	1.13 (0.8)	1.13 (0.8)
Undulator Length	m	30	30	30
Pierce parameter ρ	×10 ⁻³	1.55/1.38	2/1.68	2.5/1.8
(1D/3D)				
Radiation Wavelength	nm (keV)	2.87 (0.43)	2.8 (0.44)	2.98 (0.42)
Photon Energy	μJ	177	40	6.5
Photon per pulse	×10 ¹⁰	255	43	10
Photon Bandwidth	%	0.46	0.4	0.9
Photon RMS Transverse	μm	200	145	10
Size				
Photon Brilliance per shot	$(s mm^2 mrad^2 bw(0.1\%))^{-1}$	1.4 ×10 ²⁷	1.7 ×10 ²⁷	0.8 ×10 ²⁷

Table 4.1: Beam parameters from start-to-end simulations for full RF and for plasma wakefield acceleration cases with electron (PWFA) or laser (LWFA) driver beam

Procedure for purchasing neighboring land started

Procedura per acquisto terreni limitrofi

Announcement of tender for the building design

Indizione gara di progettazione edificio

DELIBERA GE n. 11652 del 28.03.2018

Indizione di gara comunitaria a procedura ristretta per l'affidamento dell'incarico di progettazione definitiva ed esecutiva, CSFP per la realizzazione di un nuovo complesso edilizio EuSPARC presso i LNF-INFN, con riserva di affidamento di DL e del CSFE.

Importo a base di gara:

Progettazione definitiva	€ 724.489,30
Progettazione esecutiva e CSFP	€ 537.977,17
TOTALE INCARICO	€ 1.262.466,47
Con riserva: Direzione Lavori e CSFE	€ 1.213.256,10

INFN - CERN official partnership on X-band RF development

Eupraxia@SparcLab Meeting April 18 - 2018 INFN-LNF

A. Gallo, status of the LNF X-band test stand

The INFN Frascati X-box

Pulsed Modulator: to be procured by INFN

OPERATIONAL PARAMETERS

		Unit	K2-3X	Notes
Pulse Output		- On It	ILL ON	Holes
	Peak power to Klystron	MW	150.7	Peak power from Modulator
	Average power to Klystron	kW	17.3	Average power from Modulator
	Klystron Voltage range	kV	450	Nominal 410kV, see fig above
	Klystron Current range	Α	335	Nominal 305A, see fig above
	Inverse Klystron Voltage	kV	<30	Reduced by the Solid State technology
	Pulse length	μs	1.5	Top of Klystron Voltage pulse
	Pulse length at 50%	μs	3,4	Of the Voltage Pulse
	RF duty cycle	%	0.0075	
	PRF range	Hz	1 - 50	
	Top flatness (dV)	%	<±0.25	Deviation from nominal voltage within the top of the pulse length
	Amplitude stability	%	<±0.1	
	Trig delay	μs	~1.2	See fig above
	Pulse to pulse jitter	ns	<6	
	Pulse length jitter	ns	<±10	
Filament Output				
	Klystron Max voltage DC	V	30	Nominal 10-30V
	Klystron Max current DC	Α	30	Nominal 18-30A
	Kly. Fil. Current stability	%	<±1	
	Pre-heating period	min	60	Filament current is softly ramped to max value during pre-set time

VKX-8311A

X-band klystron: provided by CERN

Typical Operating Parameters											
Item	Value	Units									
Beam Voltage	410	k∨									
Beam Current	310	А									
Frequency	11.994	GHz									
Peak Power	50	MW									
Ave, Power	5	kW									
Sat. Gain	48	dB									
Efficiency	40	%									
Duty	0.009	%									

Pulse compressor: provided by CERN

Other components:

- Low level RF and controls;
- RF driver amplifier;
- Rectangular waveguides;
- Ceramic windows;
- Vacuum pumps and power supplies;

- ...

All components will be either provided by CERN or procured by INFN in full conformity with the original CERN X-box parts.

With the contribution of the **LATINO** project: a "Laboratory in Advanced Technologies for INnOvation" funded by Regione Lazio

Plasma source characterisation

Spectroscopic measurements of plasma density

- Measurements and experimental results obtained at SPARC_LAB have shown that the externally injected beam interacts with the plasma outflown (plasma ramps)
- This effect has been investigated and studies to mitigate this effect are on going.

Filippi et al. NIMA(2018). DOI: 10.1016/i.nima. Marocchino et al. Applied Physics Letters (2017),

F. Filippi

Tapered capillaries for LWFA and PWFA

Local control of the plasma density is required to match the laser/electron beam into the plasma. Tapering the capillary diameter is the easiest way to change locally the density.

Kaganovich et al., Appl. Phys. Lett. 75, 772–774 (1099) Hippi et al. NIMA(2018), DOI: 10.1016/j.nima.2018.04.037

Studies on plasma tapering are currently ongoing

Design and characterisation of 3D printed capillary

We studied the duration of the 3D printed capillaries, fundamental for plasma based experiments.

They allows for:

- capillary shape with high spatial resolution (not easy to obtain with other technique)
- they are particularly suitable for plasma diagnostics like spectroscopic or interferometric analysis

After 55000 shots (16 h of working time) capillary radius is larger by 79 um

After 200000 shots (55 h of working time) radius was larger by 102 um

Uniform plasma density for long plasma acceleration experiments can be

Filippi et al., "3D-printed capillary for hydrogen filled discharge for plasma based experiments in RF-based

Other work in progress

- Detailed tolerance studies by S2E
- Driver / Witness separation at the plasma exit
- Options for 5 GeV electron beams
- Multi-bunch RF linac operation?
- Secondary particle Sources
- Compton Source
- Update cost analysis
- Managerial structure

Year		20	18			20	19			20	20			- 20	21			20	022			20	23			20	24			20	25	
Month	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12	3	6	9	12
EuPRAXIA																																
Design Study & ESFRI																																
Preparatory Phase																																
XLS-CompactLight																																
Design Study																																
EuPRAXIA@SPARC_LAB																																
Machine Conceptual Design Report																																
Machine Technical Design Report								M1																								
New building design																																
New building construction tender																																
New building construction																					M2											
X-band R&D																																
X-band LINAC tender																																
X-band LINAC realization and test																																
X-band LINAC installation and commissioning																									M3							
FLAME up gn de tender																																
FLAME components test																																
FLAME installation and commissioning																									M4							
									_	_	_																					
Plasma Accelerator R&D @SPARC_LAB																																
Planta Accelerator Tender																																
Plasma Accelerator Installation																									M5							
Plasma Accelerator Commissioning																												M8				
FEL undulator, optics and user tender																																
FEL undulator characterisation																																
FEL installation in the new building																									M6							
FEL commissioning																													M9			
User Beam Line R&D																																
User Beam Line Tender and Construction																																
User Beam Line Installation																									M7							
User Beam Line Commissioning																														M10		
Pilot User Operation																																M11

SPARC_LAB is the test and training facility for EuPRAXIA@SPARC_LAB Self-LWFA TNSA Thomson Ext-LWFA THz PWFA EOS FEL

2018 - PWFA - Beam/Plasma matching studies
2019 - PWFA - Acceleration and FEL injection
2020 - LWFA - Beam/Plasma matching studies

4. 2021 – LWFA – Acceleration and Diagnostics

FLAME installation and commissioning																M4					
					7			7			7										
Plasma Accelerator R&D @SPARC_LAB		[1	1)			2)		(3	3)			.)									
Disease Accelerator Tender																					
Plasma Accelerator Installation																M5					
Plasma Accelerator Commissioning																		M8			
FEL undulator, optics and user tender																					
FEL undulator characterisation																					
FEL installation in the new building																M6					
FEL commissioning																			MÐ		
User Beam Line R&D																					
User Beam Line Tender and Construction																					
User Beam Line Installation																M7					
User Beam Line Commissioning																				M10	
Pilot User Operation																					M11

Up Time/Down Time in the last 6 months

klystron ceramic window damage

Activity at SPARC

• NOV 2017

- Active plasma lens measurements (plastic capillary 1 cm length, 1 mm diameter) with different applied voltages, different transverse beam sizes at the plasma surface, with the aim to preserve the emittance
- DEC 2017
 - C-band structure in operation, providing a gain of energy of about 32 MeV with SLED (corresponding to ~27 MW in the section)
 - Gas velocity and gas density measurements to characterize the plumes out of the capillary
 - Active plasma lens experiments (sapphire capillary 3 cm length, 1 mm diameter) with different beam current (both on crest and velocity bunching operation)
 - Passive plasma lens studies to understand the effect of the plasma plumes on the emittance
 - Experimental studies on the effects of wakefields from dielectric capillary on the beam
- JAN FEB 2018
 - Machine shut-down
 - Replacement of the **plasma interaction chamber** with a new one
 - Better alignment between input PMQs, capillary and output PMQs
 - Greater flexibility of input PMQs longitudinal position with respect to the capillary, allowing operation within a larger range of beam energy
 - Replacement of the YAG pump laser with a new one
 - Removal of the 3 dB coupler on the Line 1 to allow for more power on the Gun
 - Replacement of the in-vacuum, single mirror holder for the photo-cathode laser injection with a two-mirror holder to ease UV alignment on the cathode
 - Test on electric plants => critical issues
 - Damage of the output ceramic of the Klystron 1=> replacement and conditioning
 - Conditioning of Kly1 and waveguides
 - Conditioning of C-band SLED
 - Weather issues
 - Water plants issues: leakege from S-band SLED circuit and damage of S-band SLED chiller
 - No spare parts at the moment

Activity at SPARC

• MAR 2018

- Issues with Laser alignment on cathode
- Issues with YAG pump laser (on stability and transverse uniformity)
- Issues with magnets power supplies
- APR 2018
 - Mini-shutdown
 - Amplitude visit
 - Still issues with YAG pump laser => waiting for short-term solution (to allow stable operation) and long term solution for real experiments
 - Preliminary installations of Smith-Purcell experiments (CalipsoPlus)
 - Security tests
 - Alignment studies with PMQs triplets and capillary to obtain the micron scale spot size at the capillary
 - Still issues with YAG pump laser: several optics damaged because of too high energy and too small spot size; decreasing the number of passes in the multi-pass produce a dramatic increment of instability (~30%)
 - Still issues with the chiller of the S-band SLED
 - Thermal reservoir for magnet, RF, ..., cooling below the safety level => low flux in the pipes caused a critical increment of temperature in the cooling system of solenoid => there is no floating probe (galleggiante) in the reservoir to check the level
- MAY 2018 (1st-12th)

٠

- Mini-shutdown
 - Amplitude visit
 - Still issues with YAG pump laser => Old YAG laser back into operation

Plasma Interaction Chamber

H₂ generation and injection system

SPARC

- ♦ Electrolytic generator (1 l of water → 1.4 m³ Hydrogen)
- Pressure reduction system (300 mbar → 10 mbar in capillary)
- Electro-valve triggered by the HV discharge with tunable aperture (3 ms) and delay time (10 µs before discharge)

enrica.chiadroni@lnf.infn.it

New vacuum chamber

Gas injection frequency: 10 Hz												
Measurement duration	C-band (mbar)	Current Turbo1 (A)	Current Turbo2 (A)	Current Turbo3 (A)	Current Turbo 4 (A)							
Starting values	2.7x10 ⁻⁹	0.53	0.53	0.53	0.53							
t _o (gas opening)	6x10 ⁻⁹	1.81	0.56	0.68	0.62							
20 min	1x10 ⁻⁸	1.84	0.59	0.68	0.62							
50 min	1.2x10 ⁻⁸	1.87	0.56	0.68	0.81							
70 min	1.1x10 ⁻⁸	1.87	0.59	0.68	0.62							
90 min	1x10 ⁻⁸	1.87	0.56	0.68	0.93							

C-band pressure is around 1x10⁻⁸ mbar (lower than the safety value for acc. sections) Current of turbo pumps ranging from 0.5 to 2 A (limit value is 8 A)

PMQ triplet mechanics

- Three PMQs installed, movable in z
- 2 movable channels (2 piezo motors)
- PMQ1 (close to capillary) is fixed
- 1st actuator moves PMQ2 and PMQ3 wrt PMQ1
- 2nd actuator moves PMQ3 wrt PMQ2 and PMQ1
- Minimum distance between quads is 3-4mm
- Maximum distance is >10mm
- A system consisting of several springs helps against magnetic attraction
- The phi-angle of the whole system can be manually adjusted
- Realized by TecnoAlarm

The role of temperature in Active Plasma Lens experiments

- Considering the average ionization of a H₂ gas @ 1.5x10¹⁸ cm⁻³
 - 100 A current \rightarrow 30% (corresponds to $n_p = 4 \times 10^{17} \text{ cm}^{-3}$)
 - 200 A current \rightarrow 44% (corresponds to $n_{p} = 7 \times 10^{17} \text{ cm}^{-3}$)
 - 500 A current \rightarrow 75% (corresponds to $n_p = 1.9 \times 10^{18} \text{ cm}^{-3}$)
- About 7 eV max temperature @ CLEAR (500 A current)

2018 - Planned experimental activities

- May => PM Quads matching studies
- June => Driver interaction with the Plasma
- June => Witness interaction with the Plasma
- July => Driver +Witness interaction with the Plasma
- August => Shut down, maintenance, start up
- September => Calipso⁺ Smith Purcell experiment
- October-December => PWFA experimets

Detailed planned activities (Enrica Chiadroni)

May 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
		1	2	3	4	5
		Holiday	lssues with photo-cathode laser	Holiday	Issues with photo-cathode laser	
6	7	8	9	10	11	12
	Amplitude visit					
13	14	15	16	17	18	19
	Contingency week					
20	21	22	23	24	25	26
	Injection and extraction PMQ studies					
27	28	29	30	31		
	Injection and extraction PMQ studies					
		Notes:				
		Experimental activities: Am	plitude visit to recover old YA	AG laser. Injection and extra	ction PMQs studies	

June 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					1	2
					Single bunch (driver- like) interaction w plasma	
3	4	5	6	7	8	9
	Single bunch (driver- like) interaction w plasma					
10	11	12	13	14	15	16
	Single bunch (driver- like) interaction w plasma					
17	18	19	20	21	22	23
	Single bunch (driver- like) interaction w plasma					
24	25	26	27	28	29	30
	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	
	Notes:					
	Experimental activities : length (with respect to beam (20 pC) compres	Characterization of the the plasma wavelength used through velocity but ternal injection	e interaction with a driv n; beam dynamics stuc unching (VB) in the first	rer like beam (200 pC) v lies w C-band). Beam c two structures (=> dem	with the plasma for diffe lynamics studies for a w onstration of EuPRAXIA	erent bunch /itness like working

July 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
1	2	3	4	5	6	7
	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	Single bunch (witness- like) beam dynamics studies without plasma: Experimental demonstration of EuPRAXIA working point with VB in the first two S-band sections	
8	9	10	11	12	13	14
	Driver and witness beam dynamics studies without plasma					
15	16	17	18	19	20	21
	Driver+witness interaction with capillary without plasma to study the wakefields					
22	23	24	25	26	27	28
	Driver+witness interaction w plasma					
29	30	31				
	Driver+witness interaction w plasma	Driver+witness interaction w plasma				
		Notes:				
		Experimental activities studies w C-band); Wa plasma; characterizatio	Characterization of dr kefield studies with drive on of driver and witness	iver and witness beam er and witness self-inter beam interaction with	without plasma (beam action with capillary wi plasma => acceleratic	dynamics thout on studies

August 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday						
			1	2	3	4						
			Driver+witness interaction w plasma	Driver+witness interaction w plasma	Driver+witness interaction w plasma							
5	6	7	8	9	10	11						
	Labs closed	Labs closed	Labs closed	Labs closed	Labs closed							
12	13	14	15	16	17	18						
	Labs closed	Labs closed	Labs closed	Labs closed	Labs closed							
19	20	21	22	23	24	25						
	Sub-systems start up	Sub-systems start up	Sub-systems start up	Sub-systems start up	Sub-systems start up							
26	27	28	29	30	31							
	Sub-systems start up	Sub-systems start up	Sub-systems start up	Sub-systems start up	Sub-systems start up							
		Notes:										
		The experimental activities are dependent on the presence of available personnel (also technical)										

September 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
						1	
2	3	4	5	6	7	8	
	Machine start-up	Machine start-up	Machine start-up	Machine start-up	Machine start-up		
9	10	11	12	13	14	15	
	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment		
16	17	18	19	20	21	22	
	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment	Commissioning of the dogleg beamline for Smith-Purcell experiment (CalipsoPlus)/CavBPM experiment		
23	24	25	26	27	28	29	
	Smith-Purcell experiment	Smith-Purcell experiment	Smith-Purcell experiment	Smith-Purcell experiment	Smith-Purcell experiment		
30	Notes:	tes:					
	Experimental activities: The autumn start up will be dedicated to the commissioning of the dogleg beamline to satisfy the beam time request from CEA group within the CalipsoPlus framework to study a device based on Smith-Purcell radiation for measuring the bunch length (proposal submitted at the CalipsoPlus Committee). The same beamline will be optimized to host other two experiments, one to characterize a new design for the cavity BPM, and the second one to calibrate dosimetry films at different energies.						

October 2018

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1	2	3	4	5	6
	Cavity BPM experiments					
7	8	9	10	11	12	13
	Smith-Purcell experiment	Smith-Purcell experiment	Smith-Purcell experiment	Smith-Purcell experiment	Smith-Purcell experiment	
14	15	16	17	18	19	20
	Plasma-based experiments	Plasma-based experiments	Plasma-based experiments	Plasma-based experiments	Plasma-based experiments	
21	22	23	24	25	26	27
	Plasma-based experiments	Plasma-based experiments	Plasma-based experiments	Plasma-based experiments	Plasma-based experiments	
28	29	30	31			
	Plasma-based experiments	Plasma-based experiments	Till the end of 2018			
		Notes:				

FLAME activity

FLAME uptime and downtime from January to May 2018

Activity at FLAME

- NOV 2017
 - EOS experiment phase 2, measurement of electrons accelerated by using EOS and electron spectrometer
 - Amlitude visit, installation of new mazzler and a few more YAGs.
- DEC 2017
 - EOS experiment, measurement of the first electron spectra. No signs of EOS signal.
- JAN FEB 2018
 - Machine shut-down
 - AT visit for YAG installation
 - FIRE ACCIDENT n.2 => laser shout down
 - Installation of the new fire alarm
 - Upgrade of interlock system of the YAGs
 - Installation of a new vacuum chamber for EXIN capillary guiding on the sealing of the FLAME bunker
- MAR 2018
 - Alignment of the capillaries and installation of the diagnostics
 - AT visit for the interlock system finalization and laser restart
- APR 2018
 - Cleaning of water filters
 - Replacement of water tubes is needed
 - Replacement of electrical cables
 - 5.7 J energy achieved

FLAME status

After fire accident #2 (Feb. 2018) FLAME has been recovered and now is back in operation.

We are still running experiments with EOS to finalize the intensity scaling. We have got correlated electron spectrum with EOS signal! There are still many aspects to investigate and delay is mainly due to fire accident (1 month of shout down) and photocathode laser issues (which has required all laser team efforts).

The new interaction chamber to be installed in the FLAME bunker has experienced lot of delays due to administration issues. It's overseen to be order this month and be deliver in Frascati before summer. Hopefully will be installed in the FLAME bunker (after vacuum tests) after summer holidays.

FLAME status: EXIN tests at FLAME

Part of the EXIN beam-line has been mounted at the exit of the laser clean room. The whole system (gas, high voltage, capillary, movements, diagnostics and so on) have been mounted in the chamber. A small part of the probe beam will be used to start the guiding experiments.

In this way experiments in the main chamber downstairs can go in parallel.

The goal of the experiment is to implement diagnostic, to learn guiding, see lifetime of capillaries, implement the right plasma profile for guiding, test diagnostics and ideas and so on.

Laser guiding test alignment

w/o capillary

With capillary

SL_EXIN experiment preparation

The LWFA & the Thomson experiments have been joined in the same beamline provided a tunable mirrors set able to propagate and counter-propagate the FLAME laser pulse in the modified interaction chamber

FLAME status: program

From now on.

Activity	Start date	End date
EOS experiment – phase 2	14/05/2018	15/06/2018
Gas plant – preparation and installation	25/06/2018	06/07/2018
EOS experiment – phase 2	09/07/2018	27/07/2018
New interaction chamber deliver and vacuum tests	01/06/2018	27/07/2018
Installation of the new interaction chamber	03/09/2018	28/09/2018
Capillary guiding for EXIN @ FLAME – bunker	22/10/2018	21/12/2018

In parallel to EOS experiment and until the new interaction chamber installation in the FLAME bunker there are EXIN tests that will be done just out of the laser clean room (from now until the beginning of summer holidays).

Conclusions

- EuPRAXIA@SPARC_LAB CDR delivered
- Procedure for purchasing neighboring land started
- Announcement of tender for the building design ready
- X-box design and components purchase started
- New Capillary design and test in progress
- New plasma interaction chambers installed at SPARC and FLAME
- FLAME in operation with 5 J
- SPARC still suffering for laser, cooling et al.
- SPARC_LAB is a unique test & training opportunity for LNF towards the realization of the EuPRAXIA@SPARC_LAB user facility.

Thank for your attention