GENERALIZED ROBERTSON -WALKER AND TWISTED SPACETIMES

Luca G. Molinari & Carlo A. Mantica Dipartimento di Fisica UniMi e I.N.F.N. Milano

July 9, 2018

A hierarchy of space-times

Warped and twisted metrics have the form

$$ds^2 = -dt^2 + a^2 g_{\mu\nu}^* dx^\mu dx^\nu$$

where a is the scale factor.

- 1) Robertson-Walker: a(t), (M^*, g^*) maximally symmetric.
- **2) Generalized RW:** a(t), (M^*, g^*) a Riemannian manifold.
- 3) Twisted: $a(\mathbf{x}, t)$, (M^*, g^*) a Riemannian manifold.

Bang-Yen Chen gave covariant characterizations of GRW and for twisted. An alternative unifying scheme:

Theorem (Mantica & Molinari, 2017)

A Lorentzian manifold is **Twisted** iff \exists a velocity field $(u^j u_j = -1)$ such that $\nabla_i u_j = \varphi(g_{ij} + u_i u_j)$. φ is Hubble's parameter H.

- the manifold is **GRW** if $R_i^j u_i = \xi u_i$.
- the manifold is **RW** if also $C_{iikl} = 0$.

RICCI and WEYL TENSORS

General form of the Ricci tensor in a twisted space-time:

$$R_{ij} = Ag_{ij} + Bu_iu_j - (n-2)(u_iv_j + v_iu_j - C_{kijm}u^ku^m)$$

GRW: $v_i = 0$ i.e. u_i is eigenvector;

RW: $v_i = 0$ and $C_{jklm} = 0$ (perfect fluid).

A simple statement (with long proof):

Theorem (Molinari & Mantica, 2017)

In a twisted space-time

$$\nabla^m C_{jklm} = 0 \iff u^m C_{jklm} = 0$$

f(R) gravity

The Einstein equations $R_{ij} - \frac{R}{2}g_{ij} = \kappa T_{ij}$ descend from minimal action:

$$S = \int d^4x \, \sqrt{g} \, R(x) + S_{\text{matt}}$$

 \Rightarrow a Ricci tensor of the form $R_{ij} = Au_iu_j + Bg_{ij}$ corresponds to a matter tensor $T_{ij} = (p + \mu)u_iu_j + pg_{ij}$ (perfect fluid).

In f(R) gravity the scalar curvature R is replaced by a function f(R) that modifies the Einstein eqs. It is a viable route to describe DM effects without new matter fields (Capozziello).

Theorem (Mantica & Molinari, to appear)

A perfect fluid Ricci tensor implies a perfect fluid matter tensor iff the space-time is a GRW.

Publications 2017

- C.A.Mantica and L.G.Molinari, Simple conformally recurrent space-times are conformally recurrent pp-waves, Coll. Math. **150** (1) (2017) 9–20.
- C.A. Mantica and L.G.Molinari, Generalized Robertson Walker spacetimes: a survey, Int. J. Geom. Meth. Mod. Phys. 14 (2017) 1730001 (27 pp.)
- C.A.Mantica and L.G.Molinari, Twisted Lorentzian manifolds: a characterisation with torse-forming time-like unit vectors, Gen. Relativ. Gravit. 49 (2017) 51 (7 pp).
- L.G.Molinari and C.A.Mantica, A simple property of the Weyl tensor for a shear, vorticity and acceleration-free velocity field, Gen. Relativ. Gravit. 50 (2018) 81 (7 pp.)