

Status of Laser System

Marco Incagli - INFN Pisa

Meeting with referees - 16 mar 2018

Main activities sep/2017 - mar/2018

Short summary: the system is ready for data taking!

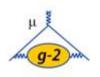
- Hardware
 - 1. Local Monitor installation
 - 2. Source MoniTor optimization
 - 3. Laser Heads relative timing
 - 4. Filter Wheel transmission
 - 5. Laser Control Board
 - 6. Double Pulse

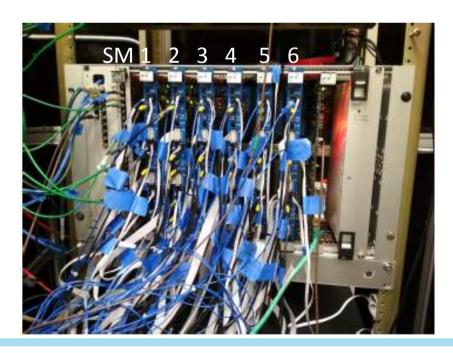
- Software
 - 1. Reconstruction software
 - 2. Data Quality Control
 - 3. Slow Control
- Varie
 - 1. shifts/experts oncall
 - 2. wiki page
 - 3. web page

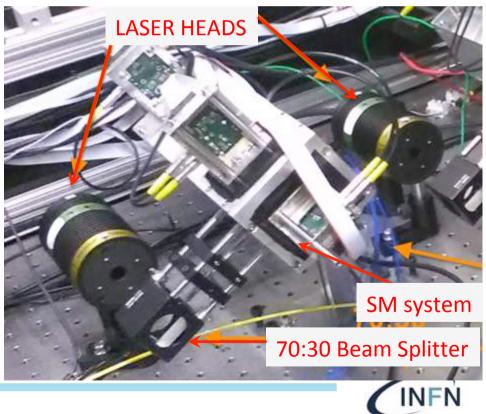
Hardware

Local Monitor installation
 Source Monitor optimization
 Laser Heads relative timing
 Filter Wheel transmission
 Laser Control Board
 Double Pulse

1 - New PMTs for Local Monitors (LM) installed


- All 24 LM PMTs installed and working
- New PMTs (Hamamatsu R1924A-100)
- New HV system (CAEN)
- 5 old PMTs connected to spare channels to study the effect of LM redundancy





2 - Source Monitor (SM) system

- Each laser is monitored by 1 PMT and 2 PiN diodes
- SM system powered by Naples electronics providing Voltage Bias for PiNs and Voltage reference for PMT
- Readout both with Wave Form Digitizers (WFD) and with custom (Naples) electronics

DQM = Data Quality (online) Monitor

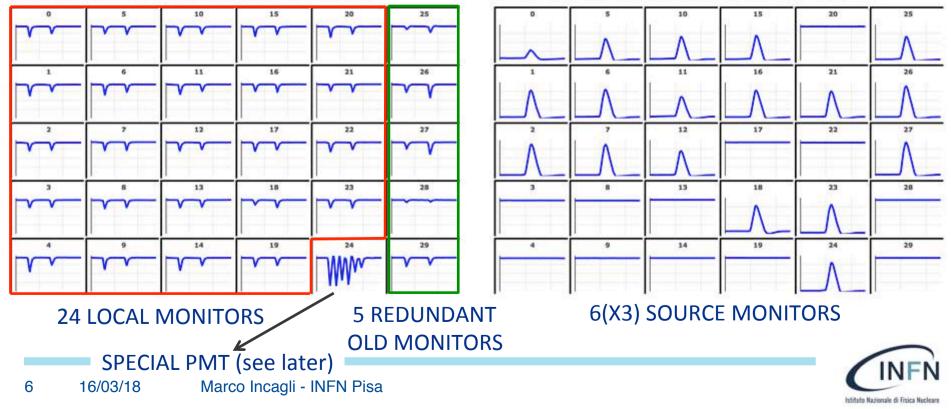
Muon g-2 DQM R

Run 13593 Event 672 2

2018-03-15 01:13:44 100% of events processed

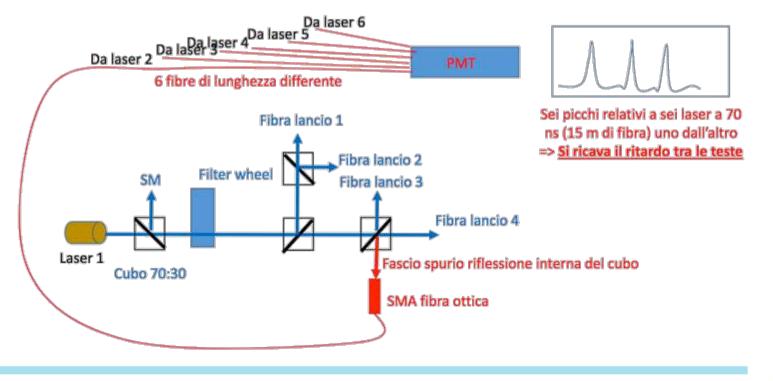
Connected

current laser mode: 1, standard mode


Laser Crate 25 Muon Fill summary plots

Laser Fill view Laser Slow Control Laser 1 Laser 2 Laser 3 Laser 4 Laser 5 Laser 6

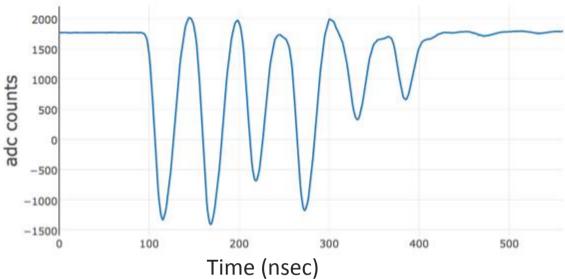
NUMBER 13593 EVENT 671 N. LM ISLANDS (for each channel)3 N. SM ISLANDS (for each channel)3


LOCAL MONITORS click on channel to select the trace

SOURCE MONITORS click on channel to select the trace

3 - The special PMT: Laser Heads relative delay

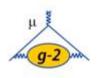
- Problem: *lost muons* * distort the wiggle function (2nd largest systematic error on ω_a in BNL)
- Often they cross 2 or even 3 calorimeters → tight (~1ns) coincidence between calorimeters to select them
- Time sync set by laser \rightarrow must know relative laser time shift



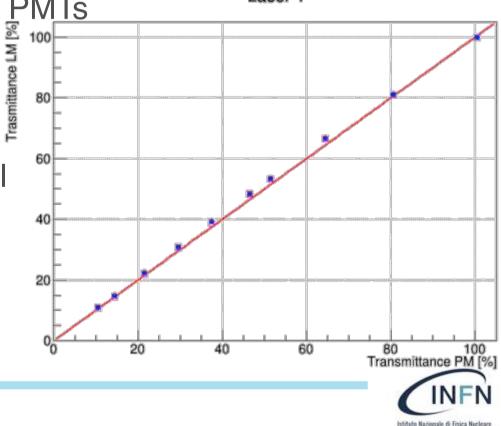
* lost muon = high or low momentum muon which hit a collimator and spiralize

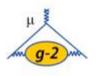
Relative timing

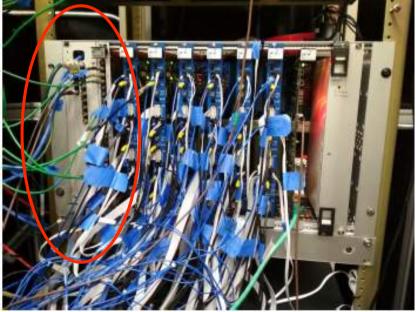
- Fiber lengths: 2, 15, 27, 39, 51, 65 m
- The delay due to different fiber length can y be measured indipendently and subtracted



- Residual delay ranges from 0.2 to 2 nsec
- Must correct for this effect


Laser	(∆t _{x-(x-1)}) _{STD}	(∆t _{x-(x-1)}) _{DP}	(∆t _{STD} -∆t _{DP})/2 (1.2 ns)	Delay laser (ns)	Delay laser DRS4 (ns)
2 – 1	54.534	57.833	-1.65	-1.98	-1.4
4 – 3	55.459	55.816	-0.18	-0.21	-0.25
6 - 5	95.113	96.240	-0.56	-0.68	-0.15


4 - Filter Wheel transmission


- The Filter Wheel system allows to vary the transmitted light from 100% to 0% in 12 steps → default position = 6
- It is used for calorimeter calibration
- Light transmission measured with a Power Meter (PM) and with the Local Monitor (LM) PMTs
- After some optimization, a good linearity is observed for all 6 lasers (note that when measuring with LM all optical transmission elements are included!)

5 - Laser Control Board

- Located in the same crate where the SM boards are
- Output: Several Trigger Patterns, sent to the Laser Driver, selected and configured through standard Online Database (ODB) interface
- New features included in firmware: Double Pulse, Prescale, Beam Splash Simulator

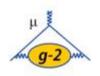
(m	atabase Browser	
Find	Create Delete	
Equipment / AMC13	325 / Laser / Configuratio	n /
▶ 1-standard-mode		
> 2-sync-pulse-only-	mode	
> 3-alternative-mode		
► 4-short-double-pul	se-mode	
▶ 5-long-double-puls	e-mode	
► 6-calibration-mode		
▶ 7-flight-sim-mode		
8-manual-mode		
 8-manual-mode debugging-flags 		
	Value	+
debugging-flags	Value 1	+
 debugging-flags Key 		+
 debugging-flags Key LaserMode 	1	+
 debugging-flags Key LaserMode Prescale 	1 1 (0x1)	+
 debugging-flags Key LaserMode Prescale FilterWheel1 	1 1 (0x1) 6 (0x6)	•
 debugging-flags Key LaserMode Prescale FilterWheel1 FilterWheel2 	1 1 (0x1) 6 (0x6) 6 (0x6)	+
 debugging-flags Key LaserMode Prescale FilterWheel1 FilterWheel2 FilterWheel3 	1 1 (0x1) 6 (0x6) 6 (0x6) 6 (0x6)	•

Article published on JINST 13(2018)

The laser control of the muon g - 2 experiment at Fermilab

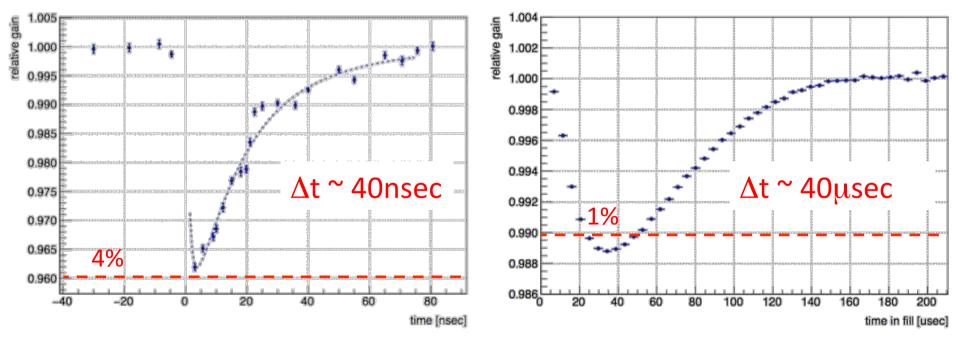
Muon g-2 Collaboration (A. Anastasi (Frascati & Messina U.), A. Anastasio (INFN, Naples), S. Avino (INFN, Naples & INFN, Messina), A. Basti, F. Bedeschi (INFN, Pisa), A. Bolano (INFN, Naples), G. Cantatore (INFN, Udine & Triste U.), D. Cauz (INFN, Udine & Udine U.), S. Ceravolo, G. Corradi (Frascati), S. Dabagov (Frascato & Moscow Phys. Eng. Inst.), P. Di Meo (INFN, Naples), A. Driutti (INFN, Trieste & Udine U.), G. Di Sciascio (INFN, Rome2), R. Di Stefano (INFN, Naples & Cassino U.), O. Escalante (INFN, Naples & Naples U.), C. Ferrari (Frascati), A.T. Fienberg (Washington U., Seattle), A. Fioretti, C. Gabbanini (INFN, Pisa), A. Gioiosa (INFN, Lecce), D. Hampai (Frascati), D.W. Hertzog (Washington U., Seattle), M. Iacovacci (INFN, Naples & Naples U.), M. Incagli (INFN, Pisa), M. Karuza (INFN, INFN & Rijeka U. & Udine U.), J. Kaspar (Washington U., Seattle), A. Lusiani (INFN, Pisa & Pisa, Scuola Normale Superiore), F. Marignetti (INFN, Naples & Cassino U.), S. Mastroianni (INFN, Naples), D. Moricciani (INFN, Rome2), A. Nath (INFN, Naples), G. Pauletta (INFN, Trieste & Udine U.), G.M. Piacentino (INFN, Lecce), N. Raha (INFN, Rome2), L. Santi (INFN, Trieste & Udine U.), M.W. Smith (INFN, Pisa & Washington U., Seattle), G. Venanzoni (INFN, Pisa), D. Cauz) <u>Hide</u>

Nov 9, 2017 - 15 pages

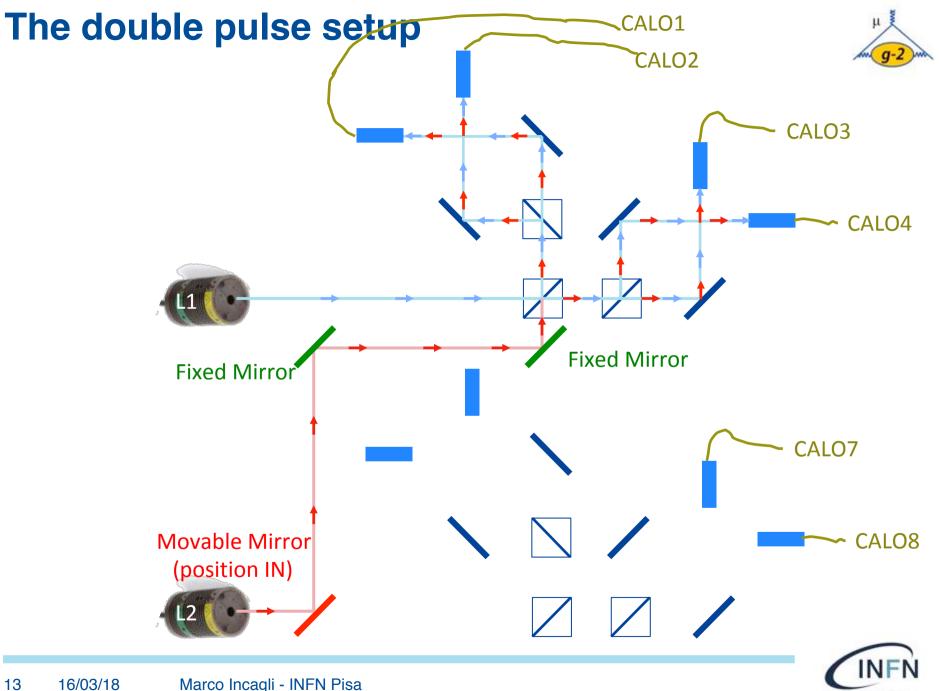

JINST 13 (2018) no.02, T02009 (2018-02-21) DOI: <u>10.1088/1748-0221/13/02/T02009</u> FERMILAB-PUB-17-502-E Experiment: FNAL-E-0989

Abstract

The Muon g-2 Experiment at Fermilab is expected to start data taking in 2017. It will measure the muon anomalous magnetic moment, a = 1g 202 to an unprecedented precision: the goal is 0.14 parts per million (ppm). The new experiment will require upgrades of detectors, electronics and data acquisition equipment to handle the much higher data volumes and slightly higher instantaneous rates. In particular, it will require a continuous monitoring and state-of-art calibration of the detectors, whose response may vary on both the millisecond and hour long timescale. The calibration system is composed of six laser sources and a light distribution system will provide short light pulses directly into each crystal (54) of the 24 calorimeters which measure energy and arrival time of the decay positrons. A Laser Control board will manage the interface between the experiment and the laser source, allowing the generation of light pulses according to specific needs including detector calibration, study of detector performance in running conditions, evaluation of DAQ performance. Here we present and discuss the main features of the Laser Control board.

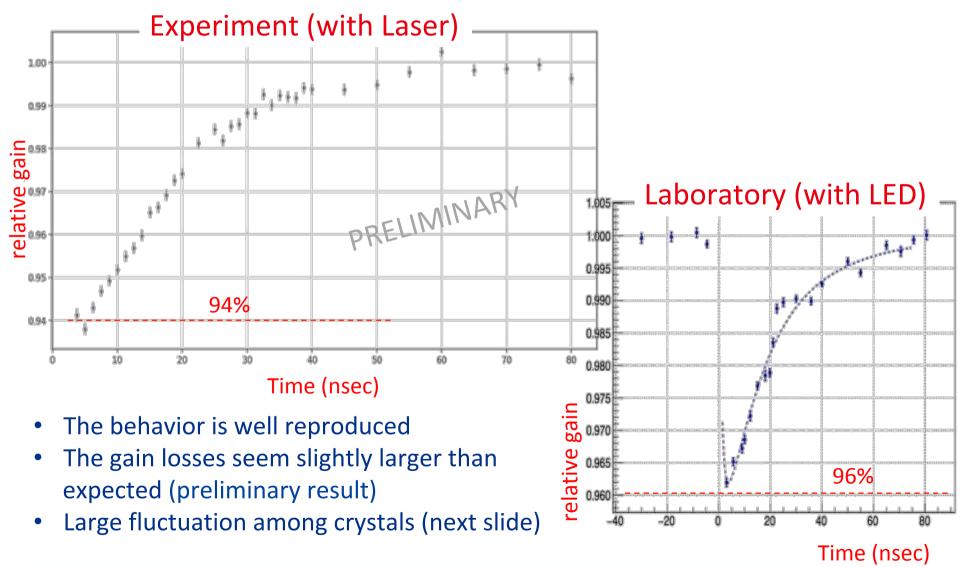


6 - The Double Pulse System


Intituto Nazionale di Finica Nucleari

 The calorimeter response is not constant within fill: ~4% drop for consecutive pulses ~40nsec (SiPM response)
 <1% drop in first 40µsec (load on Voltage power supply due to *beam splash*)

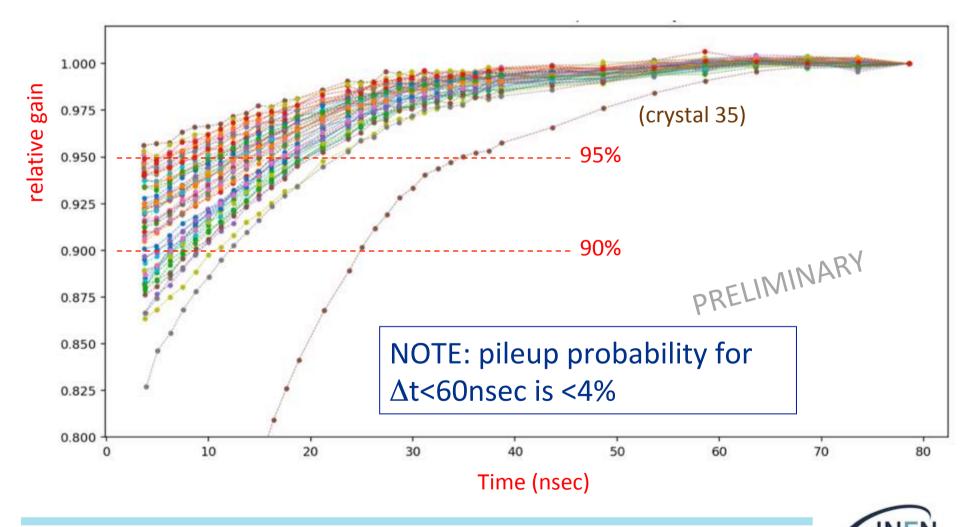
Gain changes have been the largest systematic in BNL exp



16/03/18 Marco Incagli - INFN Pisa

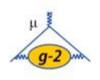
Istituto Nazionale di Fisica Nucleare

Preliminary gain function determination: crystal 23 of calo 17

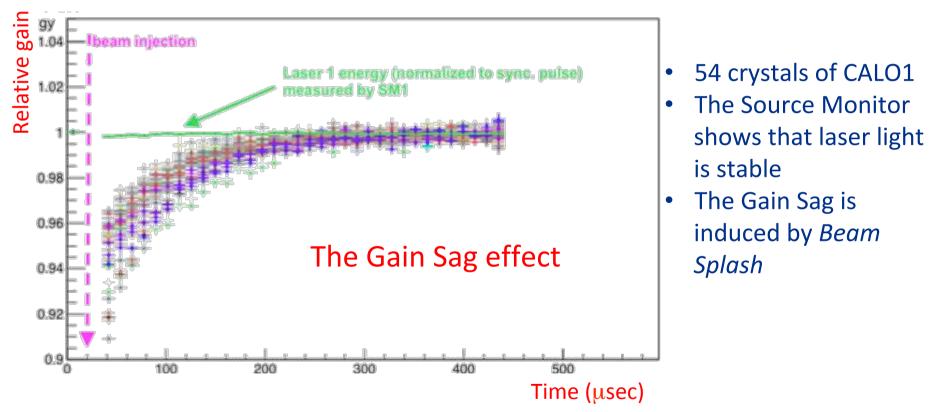

NEN

Istituto Nazionale di Fisica Nucleare

14 16/03/18 Marco Incagli - INFN Pisa

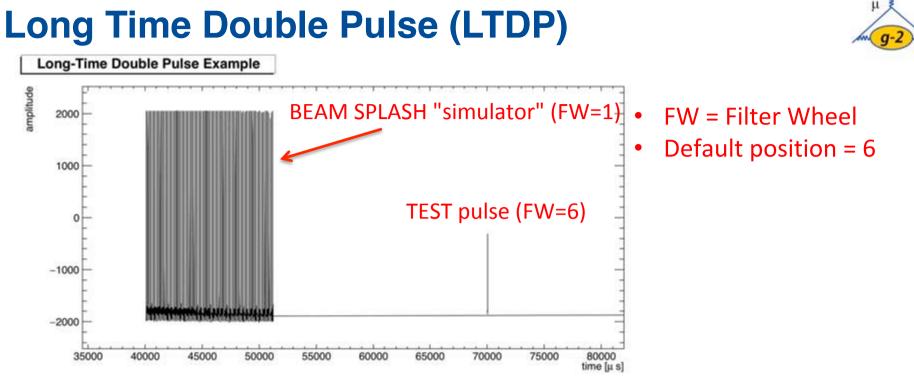


• Large spread among different crystals



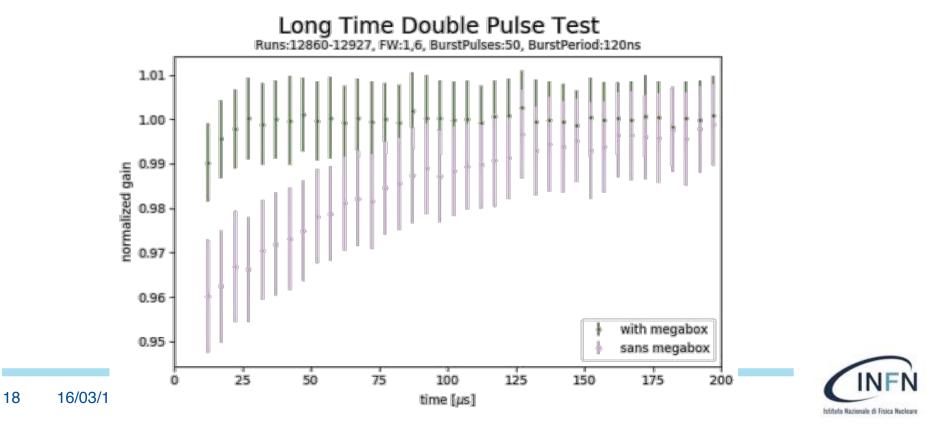
Intituto Nazionale di Finica Nuclear

The long time (~40usec) term



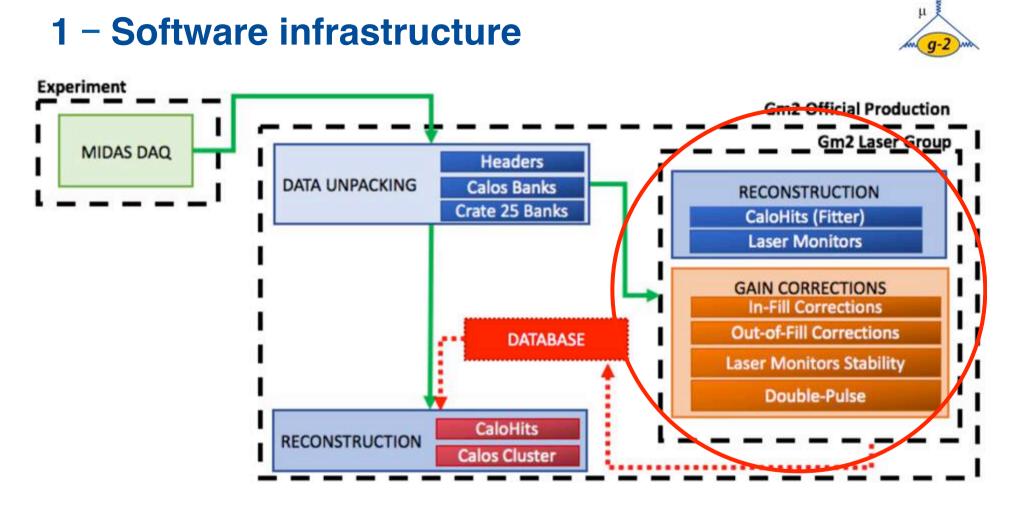
- This term is potentially much more dangerous
- Expected to be <1%, but

Systematic studies performed with Double Pulse


- Burst of N = 50 pulses with $\delta t = 120$ and FW=1
- Programmable values: N, δt, FW
- Test pulse sent after $\Delta t = [0, 200] \mu sec$
- Scan on Δt
- Several input values have been tested to parametrize calorimeter response under different beam conditions

Modified calorimeter electronics

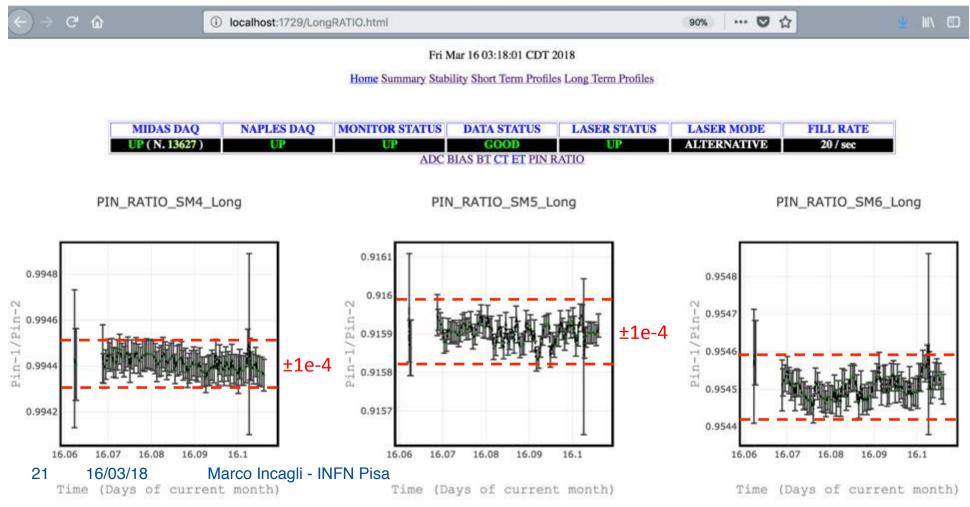
- Following our measurement, the calorimeter UW group added a set of capacitors (so-called *megaboxes*) between power supplies and SiPMs
- Residual effect below 1% level
- Now we must precisely measure it !!



Software

Reconstruction software
 Data Quality Control
 Slow Control

19 16/03/18 Marco Incagli - INFN Pisa


- Gain correction modules are under development
- See next talk by Anna Driutti

2 - Data Quality

- Data quality is checked routinely
- An automatic program checks for deviation from pre-defined stability bands and flag the periods with large fluctuations

3 - Slow Control

... 🖸 🏠 Iocalhost:3333/laser25/slowcontrol 80% Muon g-2 DQM Run 13598 Event 7247 2018-03-15 05:07:06 100% of events processed Connected current laser mode: 1, standard mode

Laser Slow Control

Laser traces - Muon Fill view

							and the second se			and the second se		
Source Monitor Bias Voltage							Lo	cal Monitor	High Voltage Pow	er Supply		
L	ast time	Thu Mar	15 2018 0	5:06:33 0	MT-0500	(CDT)	Last time Thu Mar 15 2018 05:06:33 GMT-0500 (CDT)					
SM	PMT	PMT	PID 1	PID 1	PID 2	PID 2	HV CH HV SET HV MONITOR I MON STATUS POWER					
DEV	SET	MON	SET	MON	SET	MON	0	635	635.29 148.57	1 000		
SM 1	0.00	(j.a.	0.00	0.00	0.00	0.00	1	585	585.32 137.45	1 08		
SM 2	0.00	1.2	0.00	1.00	0.00	1.2.	2	585	585.35 135.80	1 000		
SM 3	0.00	0.00	0.00	0.00	0.00	0.00	3	555	555.26 130.35	1 000		
SM 4	0.00	1.0.	0.00	2.00	0.00	0.00	4	635	635.23 149.25	1 100		
SM 5	0.00	0.00	0.00	0.00	0.00	0.00	5	550	550.29 128.80	1		
SM 6	0.00	346	0.00	0.000	0.00	1.00	6	545	545.23 127.32	1 08		
							7	510	510.19119.17	1 04		
	De	evices r	eachab	le on ne	etwork		8	585	585.32 136.76	1 01		
	- 355					1000	9	590	590.30 137.89	1 (614)		
	ast ume	Thu Mar	15 2018 (TWORK		10	525	525.36 123.49	1 000		
DEVK	CE				SPONSE		11	525	525.31 122.53	1 396		
ASEE	CONTR	OL BOAF	20	The second	or on or		12	535	535.26 124.96	1 001		
		ITOR BO				-	13	545	545.41 127.35	1 01		
	ROLLER					40 7	14	550	550.41 128.59	1 000		
OCAL	MONIT	ORHV			読み	ann -	15	540	540.39 126.89	1 017		
ELAY	GENER	ATOR			15741	1VIII	16	500	500.35 116.82	1 ON		
ASEF	HUTW	ORKSTAT	ION		1624	444	17	510	510.34 119.88	1 ON		
OUR	CE MON	ITOR WO	RKSTATE	ON N	15.22	122	18	510	510.22 119.14	1 ON		
							19	500	500.41116.84	1 010		

Laser Driver

Last time Thu Mar 15 2018 05:06:38 GMT-0500 (CDT)

MONITORING

0.9

0.9

0.9

0.9

0.9

CURRENT

LASER CURRENT

1

2

3

4

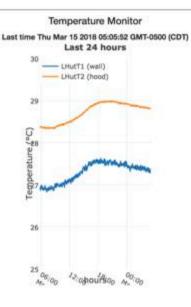
5

SETTINIG

0.9

0.9

0.9


0.9

0.9

Last update Thu Mar 15 2018 05:05:08 GMT-0500 (CDT)

Filter			1.11			
Last time Thu N	far 01	2018 1	6:40:5	0 GMT	-0600 (CST)
NUMBER	1	2	3	4	5	6
POSITION	6	6	6	6	6	6
TRASMISSION	0.37	0.37	0.37	0.35	0.35	0.37

	Flip M	irrors a	actual p	positio	n	
Last tim	e Thu Ma	r 15 201	8 05:06:	38 GMT-	0500 (CC) (T
NUMBER	1	2	з	4	5	6
MIRROR	DOWN	DOWN	DOWN	DOWN	DOWN	DOWN

INTERLOCK

STATUS

20

23

24

25

27

29

26 1100

28 1000

1000

21

22

580

535

550

560

650

980

1100

580.37 135.62

535.47 125.86

550.32 128.45

560.33 130.78

650.36 151.98

1100.29 154.69

1100.31 154.48

980.35 137.74

1000.34 140.44

1000.32 140.57

Varie

shifts/experts oncall
 wiki page
 web page

1 - At FNAL: shifts / experts on call

- Shifts taken as of March, 15 : 380/1857 = 20.4%
- Shifts in Run 1 (Mar-Jul 2018): 615/3128 = 19.8%
- An expert-on-call always present on weekly base
- Spreadsheet with list of experts available for shifter

Ħ			c all - 2018 tt Format Data		ons Help <u>Last</u>	editwas made o	n February 27 by	anonymous				E 🚊 8H/	RE 🍘
16 ^m	~ 6 7	100% -	\$ % A_ A	0 123 - Aria	r 10	• B Z	<u>s A</u> 🔌 (# 53 · E ·	· 上 · · >>		ΞΥ·Σ		۸
fx.		<u></u>		12	<u>n</u>						·/		
	A		8	C	D	€	F	G.	8	T	J	к	L.
.1					1 I		1						
2			January	January	January	February	February	February	February	March	March	March	March
â		Starting day	11	18	25	1	8	15	22	1	8	15	22
4	Ð	opert on call:	Marco Incagli	Diego Cauz	Octavio Escalante	Atanu Nath	Marin Karuza	Carlo Ferrari	Carlo Ferrari	Anna Driutti	Matthias Smith	Graziano Venanzoni	Andrea Floret
5		pager :	4305122192	4305122192	4305122192	4305122192	4305122192	4305122192	4305122192	4305122192	4305122192	4305122192	4305122192
6	(optional) persi	onal phone :						393493235938	393493235938		1-618-691-8870	393338493409	
3													
8	NOTE: the expe	rt on call shift	t starts and finish	es on Thursdays	s. First (last) day is i	n overlap with pr	evious (following)	shifter.					
9												X	
40							1	Î	i i				1

2 – Wiki page

 All Laser related infomation are mantained in a detailed WIKI page

Introduction

This page contains stable and reliable enough information on the Muon g-2 laser calibration system.

For transient on-the-spot information please use the elog sites:

- Shttps://muon.npl.washington.edu/elog/g2/Laser+Calibration+System/ for analysis related logs
 ask UW people for an account, otherwise use G2Muon...
- O http://dbweb5.fnal.gov:8080/ECL/gm2/E/index?category_Id=21 for operational & shift logs
 o must use your FNAL services password, it is part of FNAL logbook services

Information

- how to edit and contribute
- General instruction for New Users

Software

- Offline
- Online and ODB
- Calibration
- Database and Slow Control

Hardware

- Hardware maps
- High Voltage System (Local Monitor and Source Monitor)
- Laser related hardware (laser control i.e. Sepia II, ...)

Procedures and Plots

- Laser System for Shifters
- Procedure for Double Pulse
- Procedure for Filter Wheel Calibration
- Procedure for Flight Simulator
- Laser performance plots

Sitemap Group Members Dissemination V Muon g-2 Opportunities News Funding Institutions V House Internal

The <u>Muon g-2 Fermilab experiment</u> (FNAL E989) plans to measure the muon <u>anomalous magnetic moment</u> with a precision of 0.14 parts per million, about 4 times better than the present world-average (dominated by the <u>result of the BNL E821 experiment</u>). The aim is to compare this measurement with the Standard Model prediction, which has a precision comparable to the present experimental one, and differs from the experimental value by about 3 σ .

The E989 collaboration includes several participating Italian research institutions, which have the task to design, construct and operate the **laser calibration system** for the experiment electro-magnetic calorimeter. This system precisely monitors the gain the calorimeter, whose understanding corresponds to a significant systematic

Summary

• System is ready for data taking

Systematics on ω_a

Category	E821	E989 Improvement Plans	Goal	
	[ppb]		[ppb]	Laser System Role:
Gain changes	120	Better laser calibration		
		low-energy threshold	20	Key element
Pileup	80	Low-energy samples recorded		
		calorimeter segmentation	40	Helps (timing)
Lost muons	90	Better collimation in ring	20	Helps (timing)
CBO	70	Higher n value (frequency)		
		Better match of beamline to ring	< 30	↓
E and pitch	50	Improved tracker		Beam related
		Precise storage ring simulations	30	effects
Total	180	Quadrature sum	70	

• The Laser is the key element in reducing the *overall* (including effects on B, not listed here) largest systematic error and it contributes to the reduction of 2nd and 3rd largest effects on ω_a

Systematics on ω_{p}

Category	E821 [ppb]	Main E989 Improvement Plans	Goal [ppb]	
Absolute field calibra- tion	50	Special 1.45 T calibration magnet with thermal enclosure; additional probes; better electronics	35	m
Trolley probe calibra- tions	90	Plunging probes that can cross cal- ibrate off-central probes; better po- sition accuracy by physical stops and/or optical survey; more frequent calibrations	30	
Trolley measurements of B_0	50	Reduced position uncertainty by fac- tor of 2; improved rail irregularities; stabilized magnet field during mea- surements*	30	
Fixed probe interpola- tion	70	Better temperature stability of the magnet; more frequent trolley runs	30	
Muon distribution	30	Additional probes at larger radii; improved field uniformity; improved muon tracking	10	
Time-dependent exter- nal magnetic fields		Direct measurement of external fields; simulations of impact; active feedback	5	
Others †	100	Improved trolley power supply; trol-	30	Largest contribution
		ley probes extended to larger radii; reduced temperature effects on trol- ley; measure kicker field transients		
Total systematic error on ω_p	170		70	

