Exotics near thresholds and Hadron interactions in the heavy flavor sector

Yasuhiro Yamaguchi¹

in collaboration with

Yukihiro Abe ², Kenji Fukukawa ³, Atsushi Hosaka ²

¹RIKEN, ²RCNP, Osaka Univ. ³Kogakuin Univ.

Seminar@INFN Genova Genova, Italy, March 2018

Outline

- Introduction
 - Exotic hadrons
 - *Z_c*(3900)
- Meson exchange model
 - Heavy quark symmetry and the meson exchange potential
 - Heavy meson exchange potential
- Quark exchange model
- Summary

Qq	D *	Ā
2	\overline{Q}^{q}	

• Level structure of "matter"

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

• Level structure of "matter"

from HiggsTan.com

<ロ> <同> <同> < 回> < 回>

э

• Level structure of "matter"

from HiggsTan.com

<ロ> <同> <同> < 回> < 回>

э

Level structure of "matter"

- Elementary particle "Quarks"
- $u, d \rightarrow$ Proton, Nucleon (Ordinary)

A (1) > (1)

• Systems with *s*, *c* or *b* beyond ordinary matters

Quark-Gluon dynamics Introduction

 Quantum ChromoDynamics (QCD) \rightarrow describing the strong interaction of quark and gluon

$$\mathcal{L}_{QCD} = ar{q}(i\gamma^{\mu}(\partial_{\mu} + igA^{a}_{\mu}T^{a}) - m_{q})q - rac{1}{4}G_{\mu
u}G^{\mu
u}$$

- Running coupling $\alpha_s = g^2/4\pi$
- \Rightarrow At low-energy, perturbative calculation breaks down
 - \rightarrow Quark confinement inside "Hadron" (e.g. proton, nucleon,...)

March 2018

Image: A = A

Quark-Gluon dynamics

Quantum ChromoDynamics (QCD)
 → describing the strong interaction of quark and gluon

$$\mathcal{L}_{QCD} = ar{q}(i\gamma^{\mu}(\partial_{\mu} + igA^{a}_{\mu}T^{a}) - m_{q})q - rac{1}{4}G_{\mu
u}G^{\mu
u}$$

• Running coupling $\alpha_s = g^2/4\pi$

 \Rightarrow At low-energy, perturbative calculation breaks down

 \rightarrow Quark confinement inside "Hadron" (e.g. proton, nucleon,...) **Difficulty of QCD** \rightarrow Model, Lattice

March 2018

Seminar@INFN Genova

Constituent quark model: simple but powerful Introduction

- $\bullet\,$ Simple description of Hadron structure $\to\,$ Constituent quark model
- Constituent quark model (Baryon(qqq) and Meson $q\bar{q}$) has been successfully applied to the hadron spectra!

Quark potential (One gluon exchange + Linear confinement)

$$V_q(r) = -rac{a}{r} + br + c + drac{ec{S_1} \cdot ec{S_2}}{m_1 m_2} \delta^{(3)}(r) + ...$$

(Parameters are fixed to reproduce grand state hadrons)

Constituent quark picture and beyond Introduction

▷ Charmonium $(c\bar{c})$

Charmonium *cc*

N. Brambilla, *et al.* Eur.Phys.J.C **71**(2011)1534 S. Godfrey and N. Isgur, PRD**32**(1985)189

Constituent quark model is powerful.

Constituent quark picture and beyond Introduction

 \triangleright Charmonium ($c\bar{c}$) and New Exotic hadrons X, Y, Z

N. Brambilla, *et al.* Eur.Phys.J.C **71**(2011)1534 S. Godfrey and N. Isgur, PRD**32**(1985)189

A (1) > (1) = (1) (1)

3.5

 Constituent quark model is powerful. But, many exotic states have found in the heavy quark (c, b) sector!

Constituent quark picture and beyond Introduction

 \triangleright Charmonium ($c\bar{c}$) and New Exotic hadrons X, Y, Z

N. Brambilla, *et al.* Eur.Phys.J.C **71**(2011)1534 S. Godfrey and N. Isgur, PRD**32**(1985)189

 Constituent quark model is powerful. But, many exotic states have found in the heavy quark (c, b) sector!

Charm X(3872), Charged Z_c

Belle PRL 91 (2003) 262001. A. Hosaka et al. PTEP 2016 (2016) no.6, 062C01

Bottom $Z_b(10610)$ and $Z_b(10650)$ Belle PRL 108 (2012) 122001

March 2018

Structures of Exotic hadrons

• What is the structure of Exotic hadrons? Candidates:

Multiquark states?:

Compact mutiquark and/or Hadronic molecule

- Gluon excitation?: Hybrid state
- Kinematical effect?: It is not bound state!

Structures of Exotic hadrons

• What is the structure of Exotic hadrons? Candidates:

Multiquark states?:

Compact mutiquark and/or Hadronic molecule

- Gluon excitation?: Hybrid state
- Kinematical effect?: It is not bound state!

Charged Charmonium: $Z_c(3900)$

Introduction

- Charged Charmonium??
- $Y(4260) \to Z_c(3900)\pi \to J/\psi\pi\pi$

▲ 同 ▶ ▲ 目

Charged Charmonium: $Z_c(3900)$

Introduction

- Charged Charmonium??
- $Y(4260) \rightarrow Z_c(3900)\pi \rightarrow J/\psi\pi\pi$

▷ Ordinal Charmonium $c\bar{c}$: no electric charge. $\Rightarrow Z_c^+(3900)$: Genuine Exotic State!? $c\bar{c}u\bar{d}$

A 10

э

∃ >

• $Z_c(3900)$ close to the hadron-hadron thresholds

э

- Exotic state may be a loosely bound state (resonance) of the meson-meson.
 - \Rightarrow Analogous to atomic nuclei (Deuteron: $B \sim 2.2$ MeV)

A > 4

- Exotic state may be a loosely bound state (resonance) of the meson-meson.
 - \Rightarrow Analogous to atomic nuclei (Deuteron: $B \sim 2.2$ MeV)
- $D\bar{D}^*$ molecule? π exchange

ref. A. Hosaka et al. PTEP 2016 (2016)062C01, A.Esposito, et al., Phys.Rept.668(2016)1,...

$Z_c(3900)$: Lattice QCD (Numerical Experiments)

- Lattice QCD simulation by HALQCD at $m_{\pi}=410-700$ MeV
- \Rightarrow Coupled-channel $\pi J/\psi \rho \eta_c D\bar{D}^*$

$Z_c(3900)$: Lattice QCD (Numerical Experiments) Introduction

- Lattice QCD simulation by HALQCD at $m_{\pi} = 410 700$ MeV
- \Rightarrow Coupled-channel $\pi J/\psi \rho \eta_c D\bar{D}^*$

Ikeda, et al., PRL117(2016)242001

(MeV) 4000

-200

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Z_c(3900): Lattice QCD (Numerical Experiments)

• Lattice QCD simulation by HALQCD at $m_{\pi} = 410 - 700$ MeV \Rightarrow Coupled-channel $\pi J/\psi - \rho \eta_c - D\bar{D}^*$

Ikeda, et al., PRL117(2016)242001

▲□ ► < □ ► </p>

Bound state? Threshold cusp? \rightarrow Hadron int.

Exotic structure: Bound state? Cusp?

・ 同 ト ・ 三 ト ・

Bound state? Threshold cusp? \rightarrow Hadron int. Introduction

Exotic structure: Bound state? Cusp?

(Hadron-hadron interaction)

• Hadron-hadron interaction is important to understand the nature of exotic states! not only Z_c but also others.

(4月) (4日) (4日)

Bound state? Threshold cusp? \rightarrow Hadron int. Introduction

Exotic structure: Bound state? Cusp?

(Hadron-hadron interaction)

• Hadron-hadron interaction is important to understand the nature of exotic states! not only Z_c but also others.

\rightarrow Hadron int. is not established yet...

March 2018

э

- 4 同 2 4 回 2 4 回 2 4

Model of Hadron-hadron interaction

 Long-range force: one π exchange potential (OPEP) Lightest meson π, Importance in the nuclear force, Heavy Quark Symmetry

A > 4

Model of Hadron-hadron interaction

- Long-range force: one π exchange potential (OPEP) Lightest meson π, Importance in the nuclear force, Heavy Quark Symmetry
- Short-range force: heavy meson exchange, quark exchange (a) $D^{(*)}$ meson exchange (b) Quark exchange J/ψ D^{*} \bar{c} \bar{c} \bar{c} \bar{q} \bar{q} \bar{q} \bar{q}

A > 4 B

Model of Hadron-hadron interaction

- Long-range force: one π exchange potential (OPEP) Lightest meson π, Importance in the nuclear force, Heavy Quark Symmetry
- Short-range force: heavy meson exchange, quark exchange

 How can we understand strong πJ/ψ − DD̄* potential? →Very short range interaction due to large c mass
 Today: Let us focus on Z_c(3900) as πJ/ψ − DD̄*

Meson exchange model

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Meson exchange model

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Heavy quark symmetry and OPEP Meson exchange model

(Heavy Quark Spin Symmetry)

Heavy quark symmetry and OPEP Meson exchange model

(Heavy Quark Spin Symmetry)

Charm (c), Bottom (b), Top (t)

Heavy quark symmetry and OPEP Meson exchange model

(Heavy Quark Spin Symmetry)

Charm (c), Bottom (b), Top (t)

Coupled channels Tensor force (OPEP)

Heavy Quark Spin Symmetry and Mass degeneracy Meson exchange model

Heavy Quark Spin Symmetry (HQS) N.Isgur, M.B.Wise, PLB232(1989)113

- Suppression of Spin-spin force in $m_Q \rightarrow \infty$.
 - \Rightarrow Mass degeneracy of hadrons with the different J
- e.g. Qq̄ meson

(4月) (4日) (4日)

Mass degeneracy of heavy hadrons Meson exchange model

• Mass difference between vector and pseudoscalar mesons. $(Q \bar{q}, q = u, d)$

 $\triangleright \Delta m$ decreases when the quark mass increases.

A 10

Mass degeneracy of heavy hadrons Meson exchange model

• Mass difference between vector and pseudoscalar mesons. $(Q \bar{q}, q = u, d)$

- $\triangleright \Delta m$ decreases when the quark mass increases.
 - ⇒ Degeneracy of Heavy hadrons!

For $Z_c(3900)$, $D - D^*$ mixing

< A >

Heavy hadron- π coupling Meson exchange model

• Effective Lagrangians: Heavy hadron and π

R. Casalbuoni et al., Phys.Rept.281 (1997)145, T. M. Yan, et al., PRD46(1992)1148

▷ Heavy meson: $\overline{D}^{(*)}\overline{D}^{(*)}\pi$ (DD π : Parity violation)

$$\mathcal{L}_{\pi HH} = -rac{g_{\pi}}{2f_{\pi}} \mathrm{Tr} \left[H \gamma_{\mu} \gamma_5 \partial^{\mu} \hat{\pi} \bar{H}
ight], \quad H = rac{1+\not}{2} \left[D^*_{\mu} \gamma^{\mu} - D \gamma_5
ight]$$

- Doublet D and D^* with one coupling const. $g_{\pi}=0.59$ (from $D^*
 ightarrow D\pi$ decay)
- Form factor (Hadron has finite size)

$${\cal F}(q^2)=rac{\Lambda^2-m_\pi^2}{\Lambda^2-q^2}, \hspace{1em} \Lambda_{ar D}\sim 1130 \hspace{1em} {
m MeV}$$

Heavy hadron- π coupling Meson exchange model

• Effective Lagrangians: Heavy hadron and π

R. Casalbuoni et al., Phys.Rept.281 (1997)145, T. M. Yan, et al., PRD46(1992)1148

$$\mathcal{L}_{\pi HH} = -\frac{\mathbf{g}_{\pi}}{2f_{\pi}} \text{Tr} \left[H \gamma_{\mu} \gamma_{5} \partial^{\mu} \hat{\pi} \bar{H} \right], \quad \mathbf{H} = \frac{\mathbf{1} + \mathbf{j}}{2} \left[\mathbf{D}_{\mu}^{*} \gamma^{\mu} - \mathbf{D} \gamma_{5} \right]$$

- Doublet D and D^* with one coupling const. $g_{\pi}=0.59$ (from $D^*
 ightarrow D\pi$ decay)
- Form factor (Hadron has finite size)

$${\cal F}(q^2)=rac{\Lambda^2-m_\pi^2}{\Lambda^2-q^2}, \hspace{1em} \Lambda_{ar D}\sim 1130 \hspace{1em} {
m MeV}$$

One pion exchange potential in $D^{(*)}\overline{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP)

Comments

n

• HQS induces $D\overline{D}^* - D^*\overline{D}^*$ couplings \rightarrow OPEP works!

One pion exchange potential in $D^{(*)}\bar{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP) with Tensor force!

Born amplitude Γ_1 π Γ_2 \rightarrow Non-relativistic Potential (OPEP) $\mathbf{V}^{\pi} = -\frac{1}{2} \left(\frac{g_{\pi}}{f_{\pi}} \right)^2 \left[\vec{S}_1 \cdot \vec{S}_2 C(r) + \mathbf{S}_{12}(\hat{\mathbf{r}}) \mathbf{T}(\mathbf{r}) \right] \vec{\tau}_1 \cdot \vec{\tau}_2$ $C(r) = m_{\pi}^{2} \left(\frac{e^{-m_{\pi}r}}{r} - \frac{e^{-\Lambda r}}{r} - \frac{\Lambda^{2} - m_{\pi}^{2}}{2\Lambda} e^{-\Lambda r} \right)$ D^*

Comments

n

- HQS induces $D\overline{D}^* D^*\overline{D}^*$ couplings \rightarrow OPEP works!
- Tensor force $T(r) \Rightarrow$ the driving force in atomic nuclei $S_{12}(\hat{r}) = 3(\vec{S_1} \cdot \hat{r})(\vec{S_2} \cdot \hat{r}) - \vec{S_1} \cdot \vec{S_2} \rightarrow S-D$ mixing

Heavy meson exchange potential Meson exchange model

• $D^{(*)}$ meson exchange potential in $\pi J/\psi - D^{(*)}\bar{D}^{(*)}$

$$\underbrace{\begin{array}{l} \overline{D \text{ exchange}} \\ V^{D} = \frac{2}{3} \frac{g_{\psi}g_{\pi}}{f_{\pi}\sqrt{E_{\pi}}} \left[\vec{S}_{1} \cdot \vec{S}_{2}C(r) + S_{12}(\hat{r})T(r) \right] \\ \hline \\ \overline{D^{*} \text{ exchange}} \\ V^{D^{*}} = \frac{2}{3} \frac{g_{\psi}g_{\pi}}{f_{\pi}\sqrt{E_{\pi}}} \left[2\vec{S}_{1} \cdot \vec{S}_{2}C(r) - S_{12}(\hat{r})T(r) \right] \\ g_{\psi} = 8
\end{array}$$

A. Deandrea, G. Nardulli and A. D. Polosa, PRD68(2003)034002

Comments

- $D^{(*)}$ meson exchange gives the $\pi J/\psi D^{(*)}\bar{D}^{(*)}$ potential. Hidden \leftrightarrow Open-Open
- $D^{(*)}$ mass $\sim 2 \text{ GeV} \Leftrightarrow 1/m_{D^{(*)}} \sim 0.1 \text{ fm}$ Does it work?

Numerical results: Phase shift

Meson exchange model

• We found...

(4 同) (4 日) (4 日)

э

Numerical results: Phase shift

Meson exchange model

• We found... No Bound state, No Resonance Very Small phse shift $|\delta| < 0.09$ [rad]

• $D^{(*)}\bar{D}^{(*)}$ channel: **Small** contribution from OPEP

•
$$\pi J/\psi$$
 channel: $D^{(*)}$ exchange is Negligible

A (10) < A (10) </p>

3.5 3

Numerical results: Phase shift

Meson exchange model

• We found... No Bound state, No Resonance Very Small phse shift $|\delta| < 0.09$ [rad]

- $D^{(*)}\overline{D}^{(*)}$ channel: Small contribution from OPEP Why?: Isospin factor $\vec{\tau}_1 \cdot \vec{\tau}_2$, l = 0: -3, but l = 1: +1
- πJ/ψ channel: D^(*) exchange is Negligible
 Why?: Suppression by the form factor (finite hadron size)

(4月) (日) (日)

D meson exchange \rightarrow Quark exchange Meson exchange model

- No resonance \leftarrow agreeing with Lattice QCD result
- \Leftrightarrow We cannot explain the strong $\pi J/\psi D\bar{D}^*$ potential.

D meson exchange \rightarrow Quark exchange Meson exchange model

- No resonance \leftarrow agreeing with Lattice QCD result
- \Leftrightarrow We cannot explain the strong $\pi J/\psi D\bar{D}^*$ potential.

Problems in $D^{(*)}$ exchange potential

- Too large mass, $1/m_{D^{(*)}} \sim 0.1~{
 m fm}$
- In such short range region, "Hadron" is not good effective d.o.f. ?

↓ Quark exchange interaction! →next section

Quark exchange model (on progress...)

• Born-order quark-exchange diagram

T. Barnes and E. S. Swanson, PRD46(1992)131. Swanson, Ann. Phys. 220(1992)73.

• $AB \rightarrow CD$ scattering $\mathcal{M}_{fi} \propto \langle C, D | H_I | A, B \rangle$

 Ingredients: Meson Wavefunctions(A, B, C, D) Quark interaction (Quark Model)

Born amplitude ⇒ Meson-meson Potential can be obtained

• Quark Hamiltonian (One gluon exchange + Linear potentials)

Barnes and Swanson, PRD46(1992)131.; Swanson, Ann. Phys. 220(1992)73.

$$H_{ij}^{q} = K_{q} + \left(-\frac{3}{4}br + \frac{\alpha_{s}}{r} - C\right)\vec{F}_{i}\cdot\vec{F}_{j}$$
$$-\frac{8\pi\alpha_{h}}{3m_{i}m_{j}}\left(\frac{\sigma^{3}}{\pi^{3/2}}e^{-\sigma^{2}r_{ij}^{2}}\right)\vec{S}_{i}\cdot\vec{S}_{j}\vec{F}_{i}\cdot\vec{F}_{j}$$

> Parameters are fixed to reproduce the mass of mesons

Table: Quark Model Parameters from Ann.Phys.220(1992)73.

$m_q = 0.375 \text{ GeV}$	$m_c = 1.9 \text{ GeV}$
$\alpha_s = 0.857$ $b = 0.154 \text{ GeV}^{-2}$	$\alpha_h = 0.840$ C = -0.4358 GeV
$\sigma = 0.70~{\rm GeV}$	

Scattering Amplitude Model Setup

• Born quark exchange diagrams T. Barnes and E. S. Swanson, PRD46, 131 (1992). Quark interaction between Mesons \Rightarrow Four diagrams

• Scattering Amplitude $\mathcal{M}_{\textit{fi}} \propto \langle C, D | H^q | A, B
angle$

 $\mathcal{M}_{\textit{fi}}^{\textit{tot}} = \mathcal{M}_{\textit{fi}}^{\textit{capture1}} + \mathcal{M}_{\textit{fi}}^{\textit{capture2}} + \mathcal{M}_{\textit{fi}}^{\textit{transfer1}} + \mathcal{M}_{\textit{fi}}^{\textit{transfer2}} + \mathcal{M}_{m}^{m}^{m} + \mathcal{M}_{m}^{m}^{m} + \mathcal{M}_{m}^{m} + \mathcal{M}_{m}^{m} + \mathcal{M}$

March 2018

Scattering Amplitude Model Setup

- ▷ Meson momenta: A, B, C, D
- Quark momenta: $a, \bar{a}, b, \bar{b}, c, \bar{c}, d, \bar{d}$
- ▷ Conservation: A + B = C + D, $\bar{a} = \bar{d}$, b = d

Amplitude

 $\rightarrow \int \int d^{3}a d^{3}c \phi_{C}^{*}(2\vec{c}-\vec{C})\phi_{D}^{*}(2\vec{a}-2\vec{A}-\vec{C})V(\vec{a}-\vec{c})\phi_{A}(2\vec{a}-\vec{A})\phi_{B}(2\vec{a}-\vec{A}-2\vec{C})$

Scattering Amplitude Model Setup

- ▷ Meson momenta: A, B, C, D
- Quark momenta: $a, \bar{a}, b, \bar{b}, c, \bar{c}, d, \bar{d}$
- ▷ Conservation: A + B = C + D, $\bar{a} = \bar{d}$, b = d

Amplitude

 $\rightarrow \int \int d^{3}a d^{3}c \phi_{C}^{*}(2\vec{c}-\vec{C})\phi_{D}^{*}(2\vec{a}-2\vec{A}-\vec{C})V(\vec{a}-\vec{c})\phi_{A}(2\vec{a}-\vec{A})\phi_{B}(2\vec{a}-\vec{A}-2\vec{C})$

• Potentials (momentum space) **Coulomb:** $V^{Coul}(q) = -\frac{\alpha_s}{2\pi^2} \frac{1}{\vec{q}^2}$, **Hyperfine:** $V^{Hyp}(q) = -\frac{8\pi\alpha_h}{3m_im_j}e^{-\vec{q}^2/4\sigma^2}$ **Linear (Regularized):**

March 2018

Numerical Results

(on progress...)

• $\pi J/\psi - D^{(*)}\bar{D}^{(*)}$ Cross Section (Born-term)

March 2018

-

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ……

Cross Section (Born term): $\pi J/\psi - D\bar{D}^*$

• $\pi J/\psi - D\bar{D}^*$: Amplitude \rightarrow Cross section

- Cross section $\Rightarrow |(Coulomb) + (Confine) + (Hyperfine)|^2$
- Dominant role of the Hyperfine (Spin-spin) term
 ⇔ Minor role of the Coulomb one.

Cross Section: Quark exchange vs $D^{(*)}$ exchange Numerical Result

- Comparing results of Quark exchange and $D^{(*)}$ exchange
- Can you see a dashed line $(D^{(*)} \text{ exchange})$?

Cross Section: Quark exchange vs $D^{(*)}$ exchange Numerical Result

- Comparing results of Quark exchange and D^(*) exchange
- Can you see a dashed line ($D^{(*)}$ exchange)? < 3.5×10^{-8} mb
- Large difference between Quark exchange and D^(*) exchange!

Cross Section (Born): $\pi J/\psi - D^* \bar{D}^*$

Numerical Result

- Cross section $\Rightarrow |(Coulomb) + (Confine) + (Hyperfine)|^2$
- Dominant role of the Spin-spin term.
 Coulomb term ⇒ Very small contribution.
- Large difference between Quark exchange and $D^{(*)}$ exchange!

Summary

- Many exotic states near the threshold.
 - \rightarrow Understanding the hadron-hadron interaction is needed.
- Charged charmonium $Z_c(3900)$ has been discussed as the Hadronic molecules or the threshold cusp.
- OPEP contribution is not strong. $D^{(*)}$ meson exchange is **negligible**.
- Quark exchange interaction is introduced as Short range $\pi J/\psi D^{(*)}D^{(*)}$ potential.

We find Large difference between results from Quark exchange and $D^{(*)}$ meson exchange.

Back Up

- 4 回 > - 4 回 > - 4 回 >

æ

One pion exchange potential in $D^{(*)}\overline{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP)

$$\begin{array}{c} \overline{D}^{*} \\ \Gamma_{1} \\ \overline{D} \\ \overline{D} \end{array} \begin{array}{c} D \\ \Gamma_{2} \\ \overline{D} \end{array} \begin{array}{c} D \\ \Gamma_{2} \\ D^{*} \end{array} \begin{array}{c} OPEP \\ V^{\pi} = -\frac{1}{2} \left(\frac{g_{\pi}}{f_{\pi}}\right)^{2} \left[\vec{S}_{1} \cdot \vec{S}_{2}C(r) + S_{12}(\hat{r})T(r)\right] \vec{\tau}_{1} \cdot \vec{\tau}_{2} \\ \hline Vector (\rho, \omega) exchange \\ V^{\nu} = -\left(\frac{\lambda g_{\nu}}{\sqrt{3}}\right)^{2} \left[2\vec{S}_{1} \cdot \vec{S}_{2}C(r) - S_{12}(\hat{r})T(r)\right] \vec{\tau}_{1} \cdot \vec{\tau}_{2} \end{array}$$

Comments

• Tensor force $T(r) \Rightarrow$ the driving force in atomic nuclei $S_{12}(\hat{r}) = 3(\vec{S_1} \cdot \hat{r})(\vec{S_2} \cdot \hat{r}) - \vec{S_1} \cdot \vec{S_2} \rightarrow S-D$ mixing

One pion exchange potential in $D^{(*)}\overline{D}^{(*)}$ Meson exchange model

• One boson exchange potential (OBEP) with Tensor force!

$$\begin{array}{c} \overline{D}^{*} \\ \Gamma_{1} \\ \overline{D} \\ \overline{D} \end{array} \xrightarrow{D} \begin{array}{c} D \\ \Gamma_{2} \\ \overline{D} \end{array} \xrightarrow{D} \begin{array}{c} O \\ \Gamma_{2} \\ D^{*} \end{array} \xrightarrow{D} \begin{array}{c} O \\ \nabla^{\pi} = -\frac{1}{2} \left(\frac{g_{\pi}}{f_{\pi}} \right)^{2} \left[\vec{S}_{1} \cdot \vec{S}_{2} C(r) + \mathbf{S}_{12}(\hat{\mathbf{r}}) \mathbf{T}(r) \right] \vec{\tau}_{1} \cdot \vec{\tau}_{2} \\ \hline Vector (\rho, \omega) exchange \\ V^{v} = - \left(\frac{\lambda g_{v}}{\sqrt{3}} \right)^{2} \left[2\vec{S}_{1} \cdot \vec{S}_{2} C(r) - \mathbf{S}_{12}(\hat{\mathbf{r}}) \mathbf{T}(r) \right] \vec{\tau}_{1} \cdot \vec{\tau}_{2} \end{array}$$

Comments

- Tensor force $T(r) \Rightarrow$ the driving force in atomic nuclei $S_{12}(\hat{r}) = 3(\vec{S}_1 \cdot \hat{r})(\vec{S}_2 \cdot \hat{r}) \vec{S}_1 \cdot \vec{S}_2 \rightarrow S-D$ mixing
- G-parity of vector mesons: ρ (G = −1), ω (G = +1)
 ⇒ Working against each other, ρ + ω has a minor role...

• Meson-meson thresholds,

æ

∃ ► < ∃ ►</p>

< 一□ > <

• Meson-meson thresholds, $\pi J/\psi$, $\rho\eta_c$, $\pi\psi(2S)$, $D\bar{D}^*$, $D^*\bar{D}^*$, ...

Coupled-Channels

$$\left\{ \begin{array}{c} \pi J/\psi \\ \pi \psi(2S) \\ \rho \eta_c \\ D \bar{D}^* \\ D^* \bar{D}^* \\ \vdots \end{array} \right\} - \left\{ \begin{array}{c} \pi J/\psi \\ \pi \psi(2S) \\ \rho \eta_c \\ D \bar{D}^* \\ D^* \bar{D}^* \\ D^* \bar{D}^* \\ \vdots \end{array} \right\}$$

э

• Meson-meson thresholds, $\pi J/\psi$, $\rho\eta_c$, $\pi\psi(2S)$, $D\bar{D}^*$, $D^*\bar{D}^*$, ...

- Born-order quark-exchange
 - \Rightarrow Applicable to charm exchange (Hidden \leftrightarrow Open-Open)

• Meson-meson thresholds, $\pi J/\psi$, $\rho\eta_c$, $\pi\psi(2S)$, $D\bar{D}^*$, $D^*\bar{D}^*$, ...

• <u>Born-order</u> quark-exchange \Rightarrow Applicable to <u>charm exchange</u> (Hidden \leftrightarrow Open-Open) Today: $\pi J/\psi - D\bar{D}^*$ and $\pi J/\psi - D^*\bar{D}^*$ (S-wave)

$\pi J/\psi - D\bar{D}^*$ Potentials (on the threshold)

• Energy-dependent $\pi J/\psi - D\bar{D}^*$ potential \rightarrow Result@ $E = m_D + m_{\bar{D}^*}$ ($D\bar{D}^*$ threshold)

Hyperfine (Spin-spin) and Confinement potentials
 ⇒ Working against each other

$\pi J/\psi - D^* ar{D}^*$ Potentials (on the threshold)

• Energy-dependent $\pi J/\psi - D^* \bar{D}^*$ potential \rightarrow Result@ $E = m_{D^*} + m_{\bar{D}^*}$ ($D^* \bar{D}^*$ threshold)

Hyperfine (Spin-spin) and Confinement potentials
 ⇒ Cooperating with each other

Potentials Numerical Result

Similar?

Degenerate in the heavy quark limit?

(4 同) (4 日) (4 日)

э