

# Muon Production Challenges for High Energy Physics Applications

Mark Palmer April 19, 2018





## Acknowledgements



- MAP Collaboration
- IDS-NF Collaboration
- MICE Collaboration
- Of special note: A. Blondel, J-P. Delahaye,
   E. Eichten, P. Janot, ...

## Outline



Introduction: Why Muons?

Accelerator Technology:
 The Feasibility of Building a Muon Collider

Conclusion





#### INTRODUCTION: WHY MUONS?

# Why Muons?



Physics Frontiers

#### 

- Tests of Lepton Flavor Violation
- Anomalous Magnetic Moment (g-2)
- Precision sources of neutrinos
- Next generation lepton collider

$$m_{\mu} = 105.7 MeV/c^{2}$$

$$\tau_{\mu} = 2.2 \mu s$$

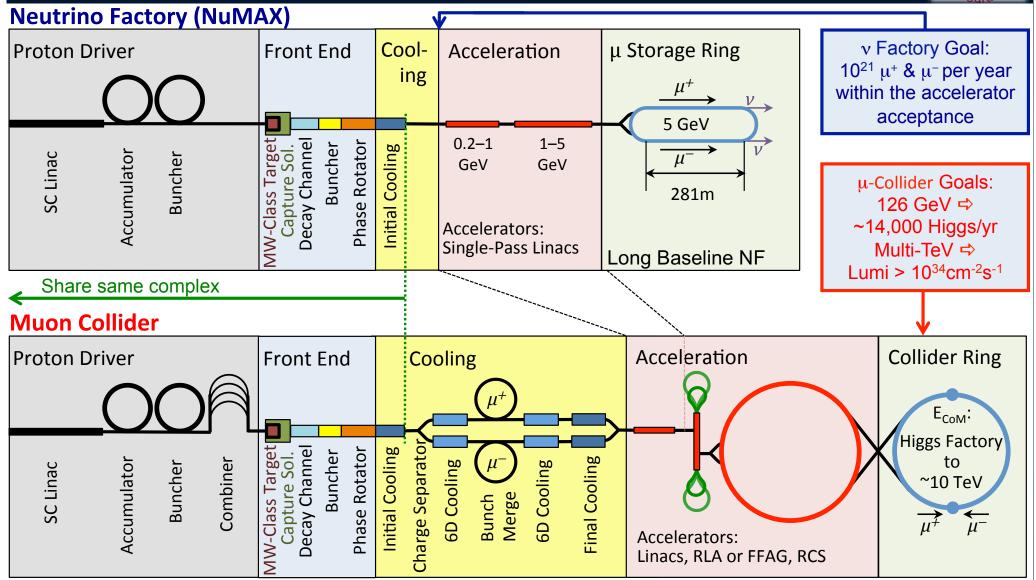
 $\left(\frac{m_{\mu}^2}{m_e^2}\right) \cong 4 \times 10^4$ 

#### • Opportunities

- s-channel production of scalar objects
- Strong coupling to particles like the Higgs
- Reduced synchrotron radiation ⇒ multi-pass acceleration feasible
- Beams can be produced with small energy spread
- · Beamstrahlung effects suppressed at IP
- BUT accelerator complex/detector must be able to handle the impacts of  $\mu$  decay

Collider Synergies

Colliders


- High intensity beams required for a long-baseline Neutrino Factory are readily provided in conjunction with a Muon Collider Front End
- Such overlaps offer unique staging strategies to guarantee physics output while developing a muon accelerator complex capable of supporting collider operations

$$\mu^{+} \to e^{+} \nu_{e} \overline{\nu}_{\mu}$$

$$\mu^{-} \to e^{-} \overline{\nu}_{e} \nu_{\mu}$$

#### High Energy Muon Accelerator Capabilities





# The MAP Approach



- Pursue a path that supports the broadest possible range of high energy physics based on muon beams
- A muon source that would support:
  - Short baseline v capabilities
  - Long baseline v capabilities
    - With the ability to optimize the energy of the source
  - Colliders
    - A Higgs factory
      - With the energy resolution necessary to directly probe the detailed resonance structure
    - Colliders at the multi-TeV scale to look for new physics

⇒ A challenging optimization focused on both production rate and luminosity issues!



#### Neutrino Factories

$$\mu^{+} \to e^{+} \nu_{e} \overline{\nu}_{\mu}$$

$$\mu^{-} \to e^{-} \overline{\nu}_{e} \nu_{\mu}$$



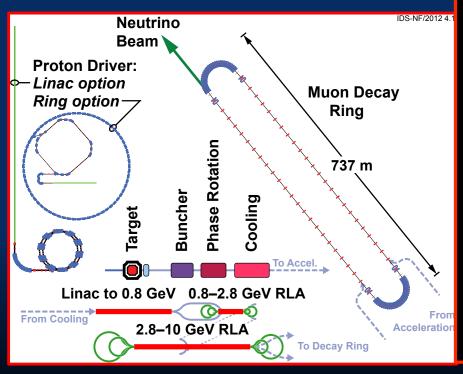
vSTORM – Short Baseline v factory



- Definitive measurement of sterile neutrinos
- Precision  $v_e$  cross-section measurements (key systematic for LB SuperBeam experiments)
- Muon accelerator proving ground...



- NuMAX (Neutrinos from a Muon Accelerator CompleX)
  - Long baseline concept developed by MAP
    - As part of its Muon Accelerator Staging Study (MASS)
  - Evolutionary from IDS-NF Concept ⇒ FNAL to SURF baseline
    - Magnetized detector (MIND, Mag LAr?)
    - CP violation sensitivity optimal for 4-6 GeV beam energy
    - Provides ongoing short baseline capabilities

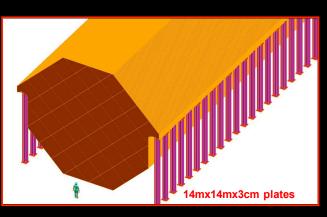


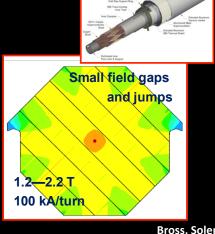

#### The Long Baseline Neutrino Factory



- IDS-NF: the ideal NF
  - Supported by MAP
- MASS working group:
   A staged approach -

#### NuMAX@5 GeV ⇒ SURF

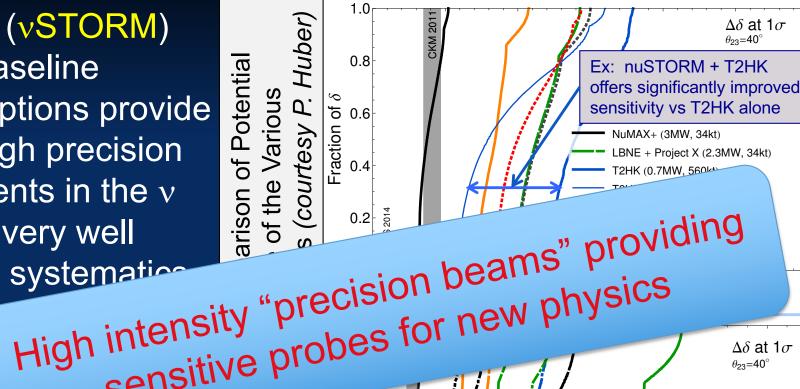




|                                                                | Value          |
|----------------------------------------------------------------|----------------|
| Accelerator facility                                           |                |
| Muon total energy                                              | 10 GeV         |
| Production straight muon decays in 10 <sup>7</sup> s           | $10^{21}$      |
| Maximum RMS angular divergence of muons in production straight | $0.1/\gamma$   |
| Distance to long-baseline neutrino detector                    | 1 500–2 500 km |

#### Magnetized Iron Neutrino Detector (MIND):

- IDS-NF baseline:
  - Intermediate baseline detector:
    - 100 kton at 2500-5000 km
  - Magic baseline detector:
    - 50 kton at 7000-8000 km
  - Appearance of "wrong-sign" muons
  - Toroidal magnetic field > 1 T
    - Excited with "superconducting transmission line"

- Segmentation: 3 cm Fe + 2 cm scintillator
- 50-100 m long
- Octagonal shape
- Welded double-sheet
  - · Width 2m; 3mm slots between plates



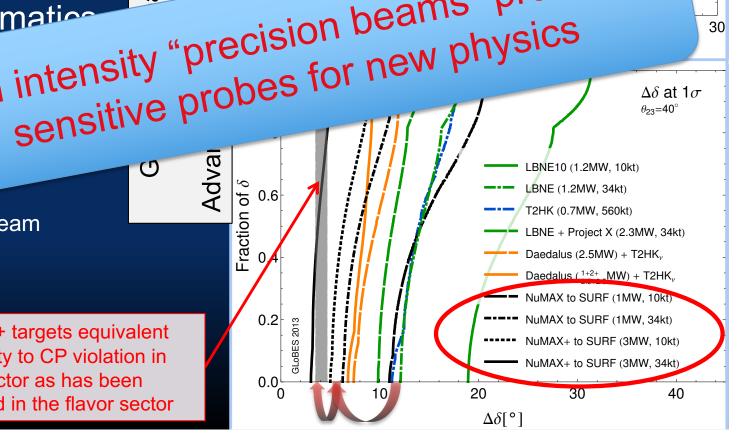



Precision Capabilities for the v Sector



Both short- (vSTORM) and long-baseline (NuMAX) options provide routes to high precision measurements in the v sector with very well understood systematics




NuMAX

Ultimate v sector

Offers:

- Well-characterized beam
- **Energy Flexibility**
- **Discovery Potential!**

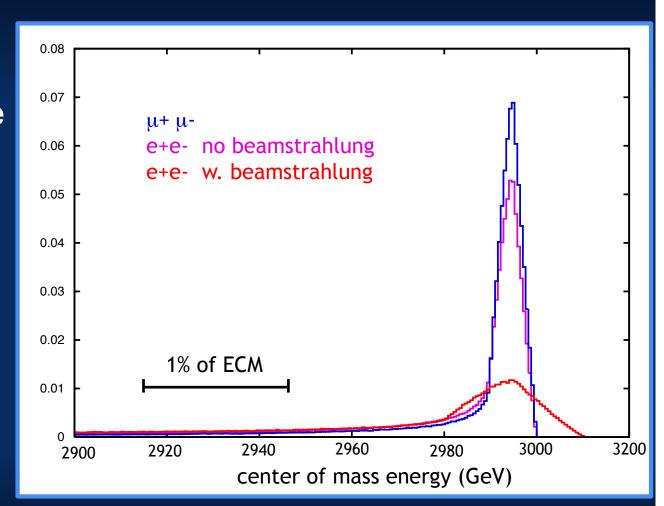
NuMAX+ targets equivalent sensitivity to CP violation in the v sector as has been achieved in the flavor sector



## Why a Muon Collider?



- First why a lepton collider?
  - In proton (or proton-antiproton) collisions, composite particles (hadrons), made up of quarks and gluons, collide
    - Fundamental interactions take place are between individual constituents
    - The constituents carry only a fraction of the total energy
    - p-p collisions:  $E_{\text{effective}} = O(10\% E_{\text{COM}})$
    - ⇒ LHC probes an energy scale E < 2 TeV
  - Electrons and muons are fundamental particles (leptons)
    - Point-like particles
    - Well-understood energy and quantum state at collision
    - Collision products probe the full CoM energy
    - ⇒ a ~2 TeV lepton collider probes the full energy range of fundamental processes under study at the LHC




#### Muon Collider Features



#### Beamstrahlung

- Effect of ISR and beamstrahlung at the IP for 3 TeV CoM energy
- Typical metric
   developed for e<sup>+</sup>e<sup>-</sup>
   LCs is the fraction of
   luminosity within 1%
   of E<sub>CM</sub>





# $\mu^{+}\mu^{-}$ Colliders vs $e^{+}e^{-}$ Colliders



- s-Channel Production
  - When 2 particles annihilate with the correct quantum numbers to produce a single final state. Examples:

$$e^+e^- \rightarrow Higgs$$

$$e^+e^- \rightarrow Higgs$$
 OR  $\mu^+\mu^- \rightarrow Higgs$ 

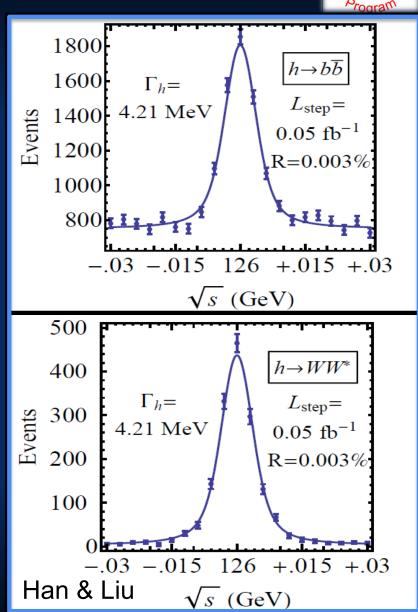
– The cross section for this process scales as  $m^2$  of the colliding particles, so:

$$\sigma(\mu^{+}\mu^{-} \to H) = \left(\frac{m_{\mu}}{m_{e}}\right)^{2} \times \sigma(e^{+}e^{-} \to H) = \left(\frac{105.7 MeV}{0.511 MeV}\right)^{2} \times \sigma(e^{+}e^{-} \to H)$$

$$\sigma(\mu^{+}\mu^{-} \to H) = 4.28 \times 10^{4} \sigma(e^{+}e^{-} \to H)$$

- A muon collider can probe the Higgs resonance directly
  - The luminosity required is not so large
  - A precision scan capability is particularly interesting in the case of a richer Higgs structure (eg, a Higgs doublet)




## Muon Collider Features



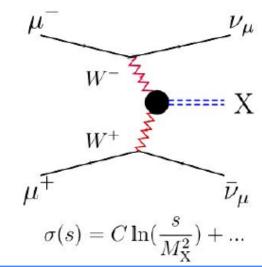
#### **Energy Resolution**

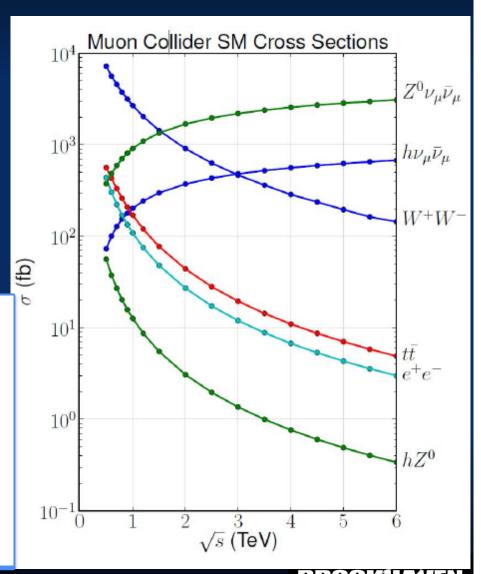
- Muon beams enable colliding beams with very small energy spread
- Of particular significance for a Higgs Factory if there were signs of a non-standard Higgs
  - Ability to directly probe the width and structure of the resonance
- Specific Cases:

 $\delta E_b/E_b \sim 4.10^{-5}$  @ Higgs  $\delta E_b/E_b \sim 10^{-4}$  to  $10^{-3}$  @ Top  $\delta E_b/E_b \sim 1.10^{-3}$  @ TeV-scale



#### Muon Collider Features





#### High Energy Collisions

- At √s > 1 TeV: Fusion processes dominate
  - An Electroweak Boson Collider
  - A discovery machine complementary to very high energy pp collider

At >5TeV: Higgs self-coupling

resolution <10%





#### Synchrotron Radiation and Energy Reach



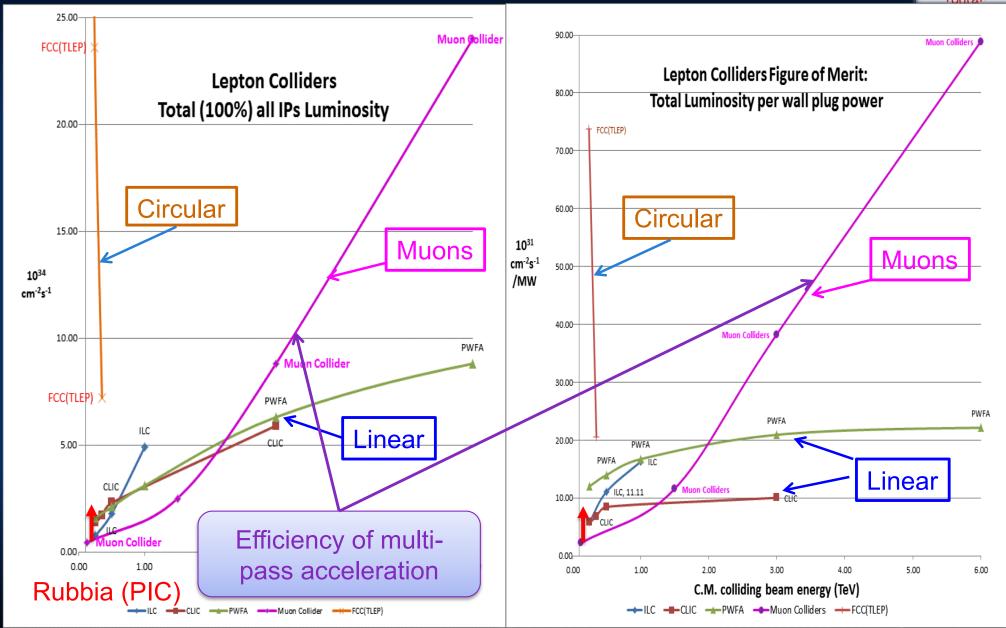
- Synchrotron Radiation
  - In a circular machine, the energy loss per turn due to synchrotron radiation can be written as:

$$\Delta E_{turn} = \left(\frac{4\pi mc^2}{3}\right) \left(\frac{r_0}{\rho}\right) \beta^3 \gamma^4$$

where  $\rho$  is the bending radius

$$\rho \propto \frac{\beta \gamma}{B} \Longrightarrow \Delta E_{turn} \propto B \gamma^3$$

– If we are interested in reaching the TeV scale, an  $e^+e^-$  circular machine is not feasible due to the large energy losses


Solution 1:  $e^+e^-$  linear collider

Solution 2: Use a heavier lepton – i.e., the muon



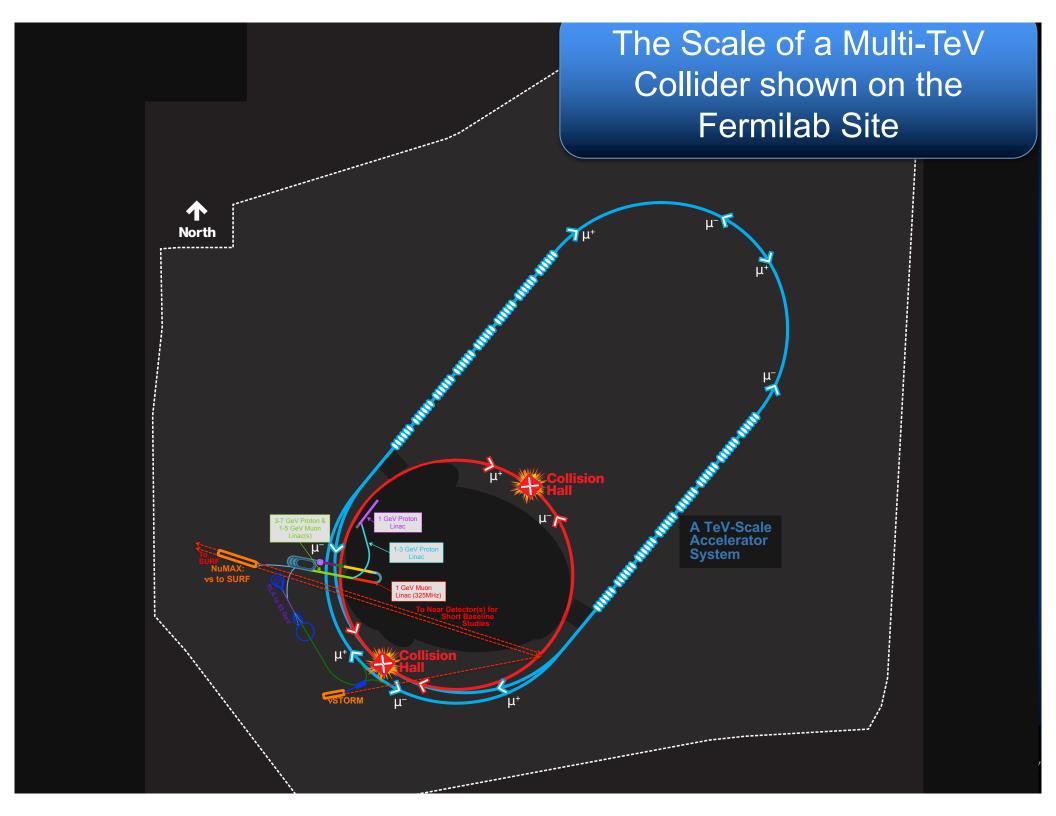
# Muon Colliders – Efficiency at the multi-TeV scale







## Muon Collider Parameters

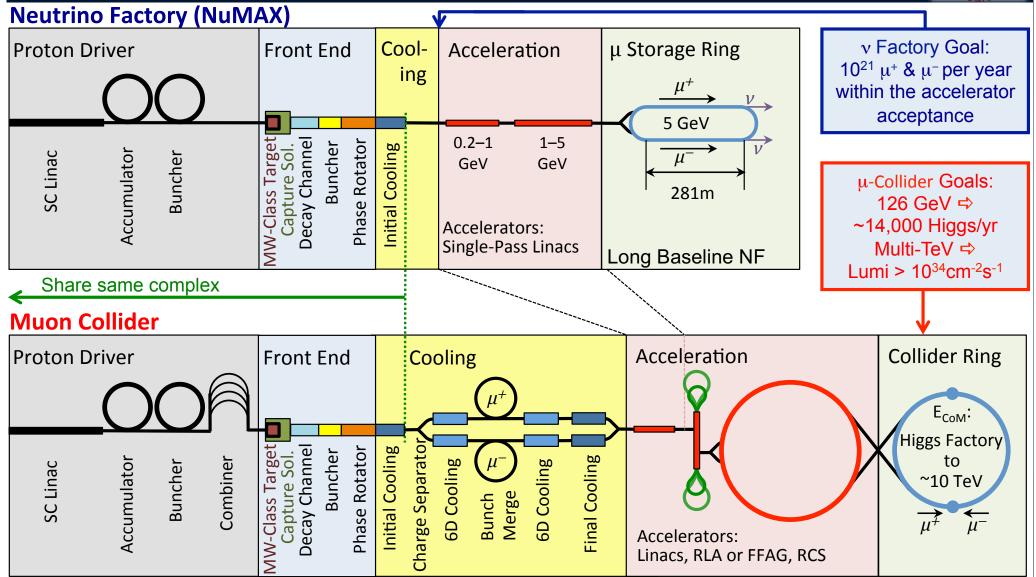



| W. Phi                                             | iviuon Coilider Parameters                      |                                                   |              |                  |             |                |
|----------------------------------------------------|-------------------------------------------------|---------------------------------------------------|--------------|------------------|-------------|----------------|
| Accelerator  Accelerator  Accelerator  Accelerator |                                                 |                                                   | <u>Higgs</u> | <u>Multi-TeV</u> |             | <u>eV</u>      |
| Fermilab Site                                      |                                                 |                                                   |              |                  |             | Accounts for   |
|                                                    |                                                 |                                                   | Production   |                  |             | Site Radiation |
| Parameter                                          |                                                 | Units                                             | Operation    |                  |             | Mitigation     |
| CoM                                                | Energy                                          | TeV                                               | 0.126        | 1.5              | 3.0         | 6.0            |
| Avg. Lu                                            | minosity                                        | 10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> | 0.008        | 1.25             | 4.4         | 12             |
| Beam Ene                                           | ergy Spread                                     | %                                                 | 0.004        | 0.1              | 0.1         | 0.1            |
| Higgs Produ                                        | uction/10 <sup>7</sup> sec                      |                                                   | 13,500       | 37,500           | 200,000     | 820,000        |
| Circum                                             | nference                                        | km                                                | 0.3          | 2.5              | 4.5         | 6              |
| No.                                                | of IPs                                          |                                                   | 1            | 2                | 2           | 2              |
| Repetit                                            | tion Rate                                       | Hz /                                              | 15           | 15               | 12          | 6              |
|                                                    | β*                                              | cm /                                              | 1.7          | 1 (0.5-2)        | 0.5 (0.3-3) | 0.25           |
| No. mud                                            | ons/bunch                                       | 10 <sup>12</sup>                                  | 4            | 2                | 2           | 2              |
| Norm. Trans                                        | . Emittance, $\epsilon_{\scriptscriptstyle TN}$ | π mm-rad                                          | 0.2          | 0.025            | 0.025       | 0.025          |
| Norm. Long.                                        | Emittance, $\epsilon_{\scriptscriptstyle LN}$   | π mm-rad                                          | 1.5          | 70               | 70          | 70             |
| Bunch L                                            | ength, $\sigma_{\scriptscriptstyle 	extsf{S}}$  | cm                                                | 6.3          | 1                | 0.5         | 0.2            |
| Proton Di                                          | river Power                                     | MW                                                | 4            | 4                | 4           | 1.6            |
| Wall Plu                                           | ug Power                                        | MW                                                | 200          | 216              | 230         | 270            |

Muon Collider Parameters

Exquisite Energy Resolution Allows Direct Measurement of Higgs Width Success of advanced cooling concepts

⇒ several ∠ 10<sup>32</sup> [Rubbia proposal: 5∠10<sup>32</sup>]






#### **ACCELERATOR TECHNOLOGY**

#### High Energy Muon Accelerator Capabilities





# Muon Collider Luminosity



For a muon collider, we can write the luminosity as:

$$\mathcal{L} = \frac{N^2 f_{coll}}{4\pi\sigma_x \sigma_y} = \frac{\left\langle N^2 \right\rangle_{n_{turns}} n_{turns} f_{bunch}}{4\pi\sigma_{\perp}^2}$$

- For the 1.5 TeV muon collider design, we have
  - N = 2×10<sup>12</sup> particles/bunch
  - $-\sigma_{x,y} \sim 5.9 \,\mu\text{m}$ ,  $\beta^* = 10 \,\text{mm}$ ,  $\varepsilon_{x,y}(norm) = 25 \,\mu\text{m-rad}$
  - n<sub>turns</sub>~1000
  - f<sub>bunch</sub>=15 Hz (rate at which new bunches are injected)

$$\mathcal{L} \approx \frac{N_0^2 n_{turns} f_{bunch}}{4\pi\sigma_{\perp}^2} \approx 1.4 \times 10^{34} cm^{-2} s^{-1}$$

• But this is optimistic since we've assumed N is constant for ~1000 turns when it's actually decreasing. The anticipated luminosity for this case is ~1.2×10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>.



# Challenges for a $\mu^{+}\mu^{-}$ Collider



- Pions from a MW-scale proton beam striking a target
- Efficient capture of the produced pions
  - Capture of both forward and backward produced pions loses polarization
- Phase space of the created pions is very large!
  - Transverse: 20π mm-rad
  - Longitudinal: 2π m-rad
- Emittances must be cooled by factors of ~10<sup>6</sup>-10<sup>7</sup> to be suitable for multi-TeV collider operation
  - ~1000x in the transverse dimensions
  - ~40x in the longitudinal dimension
- The muon lifetime is 2.2 µs lifetime at rest



#### LEMMA vs Proton Driver



#### Key Features:

- Muons produced with much smaller transverse emittance
- Significantly lower charge/bunch
- Source power requirements significantly lower than proton-driver source?

#### Impacts:

- Acceleration requirements improved
- Long Baseline NF applications appear challenging
  - Are there any paths to increased muon production rate?
- High Energy Collider
  - Luminosity performance appears acceptable
    - Collider optimization needs further study
    - Higgs factory? Similar luminosity to MAP baseline but larger energy spread prevents structural scans.
  - Lower overall charge implies detector background issues from muon decay are greatly improved
  - Site radiation issues also improved ⇒ even higher energies possible



# Cooling Options



- Electron/Positron cooling: use synchrotron radiation
  - $\Rightarrow$  For muons  $\Delta E \sim 1/m^3$  (too small!)
- Proton Cooling: use
  - A co-moving cold e- beam
    - ⇒ For muons this is too slow
  - Stochastic cooling
  - ⇒For muons this is also too slow
- Muon Cooling: use
  - Use Ionization Cooling
    - ⇒ Likely the only viable option
  - Optical stochastic cooling
  - ⇒ Maybe, but far from clear



# Key Feasibility Issues



Proton Driver

**High Power Target Station** 

Capture Solenoid

Front End

**Energy Deposition** 

Cooling

- RF in Magnetic Fields
- Magnet Needs (Nb<sub>3</sub>Sn vs HTS)
- Performance

Acceleration

Acceptance (NF)

Collider Ring

>400 Hz AC Magnets (MC)

Collider MDI

- IR Magnet Strengths/Apertures
- Collider Detector
- SC Magnet Heat Loads (µ decay)
- Backgrounds (µ decay)



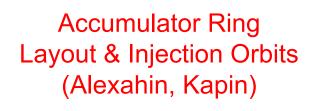
#### Characteristics of the Muon Source



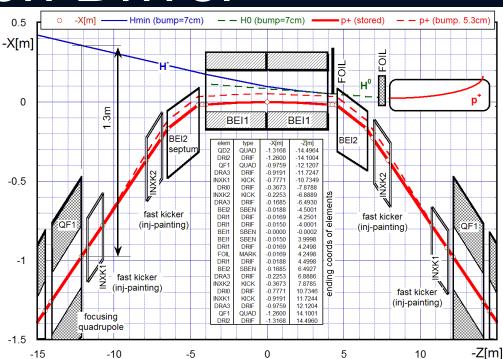
Overarching goals

-NF: Provide O(10<sup>21</sup>)  $\mu$ /yr within the acceptance of a  $\mu$  ring

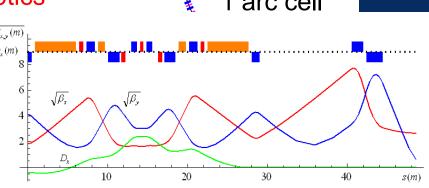
MC: Provide luminosities >10<sup>34</sup>/cm<sup>-2</sup>s<sup>-1</sup> at TeV-scale (~n<sub>b</sub><sup>2</sup>)
 Enable precision probe of particles like the Higgs


- How do we do this?
  - Tertiary muon production through protons on target (followed by capture and cooling)

Rate > 
$$10^{13}$$
/sec  $n_b = 2.10^{12}$ 




## **Proton Driver**

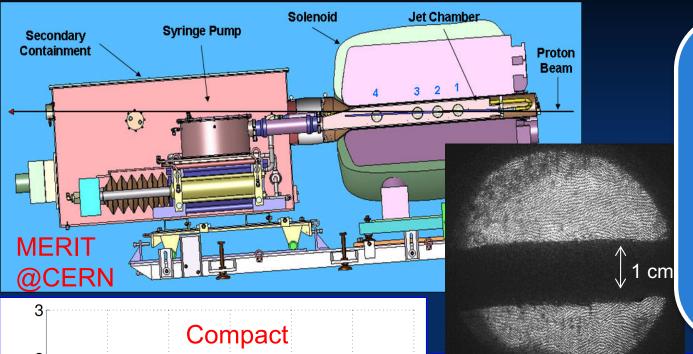




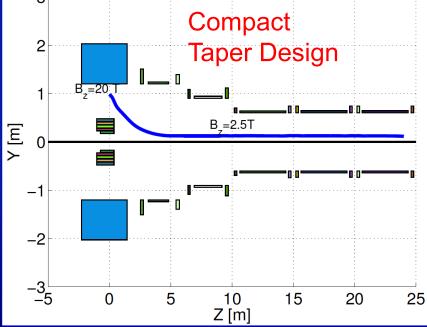

3.87 kicker for MHz vertical extraction V=11

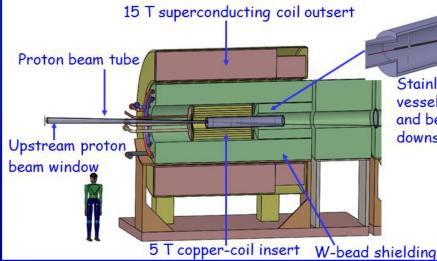


Buncher Ring Layout & Optics (Alexahin) (Alexahin) Optics:
½ staight +
1 arc cell




- ✓ Based on 6-8 GeV Linac Source
- ✓ Accumulator & Buncher Ring Designs in hand
- ✓ H- stripping requirements same as those established for Fermilab's Project X


NATIONAL LABORATOI

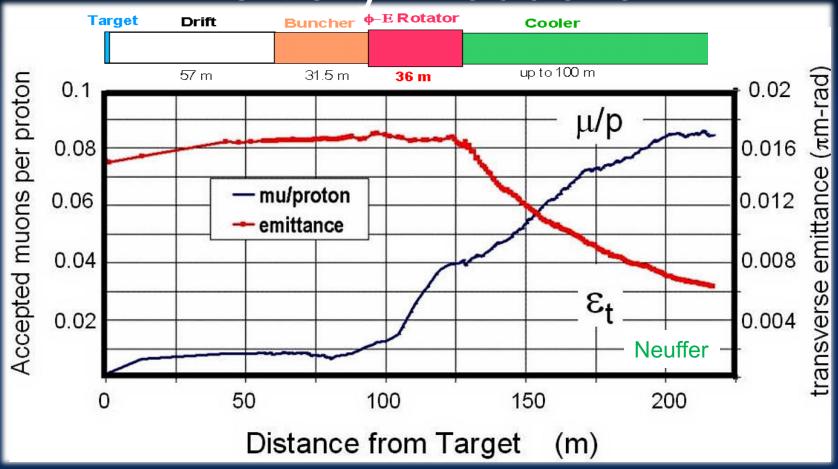

## High Power Target





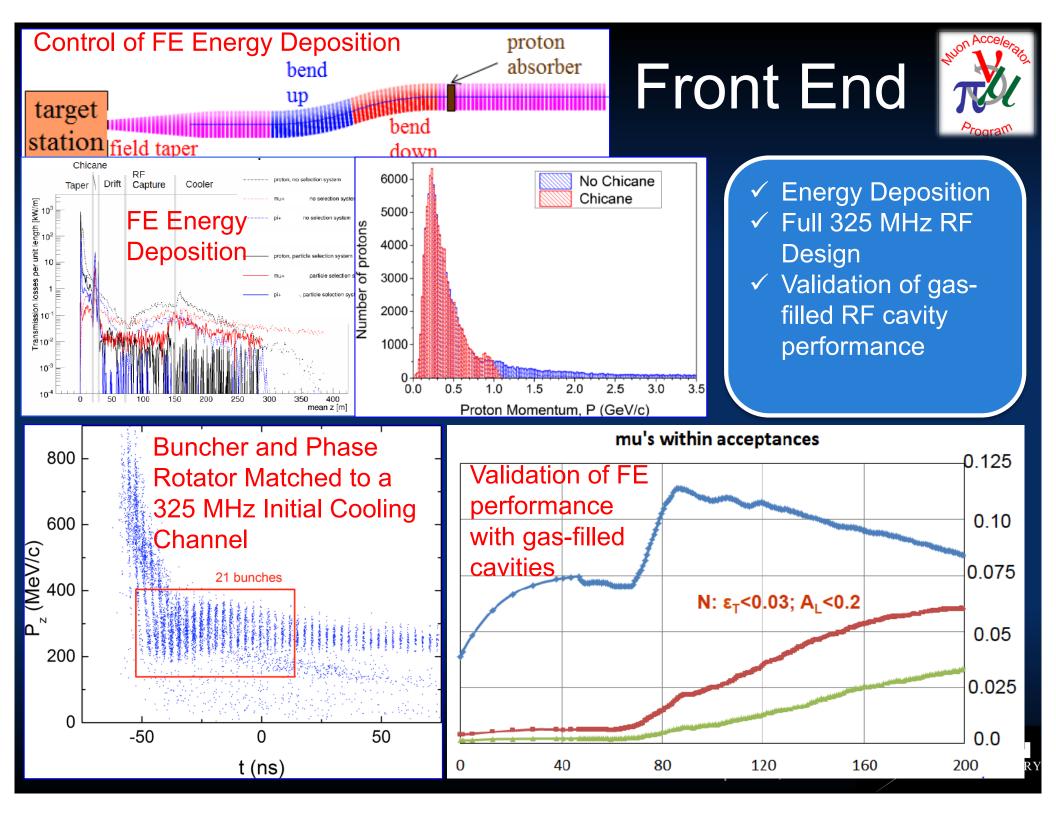
- ✓ MERIT Expt:
  - LHg Jet in 15T
  - Capability: 8MW @70Hz
- ✓ MAP Staging aims at1-2 MW ⇒ C Target
- ✓ Improved Compact Taper Design
  - Performance & Cost






Stainless-steel target vessel with graphite target and beam dump, and downstream Be window.

C Target Option

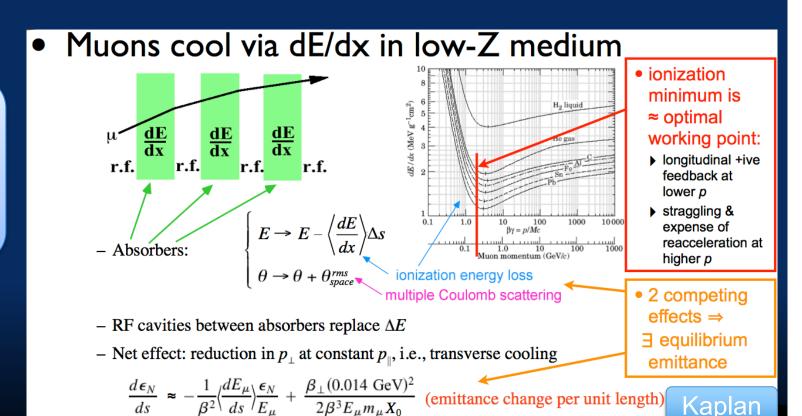

# Technology Challenges – Tertiary Production





 A multi-MW proton source would enable O(10<sup>21</sup>) muons/year to be produced, bunched and cooled to fit within the acceptance of an accelerator.

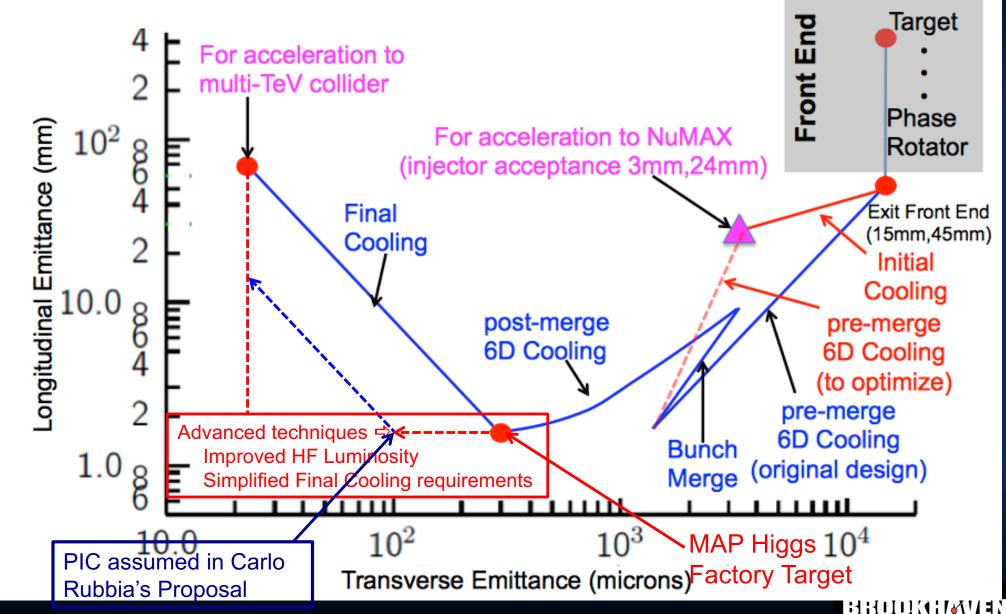





# Cooling Methods



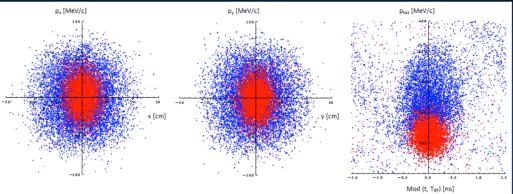
- The unique challenge of muon cooling is its short lifetime
  - Cooling must take place very quickly
  - More quickly than any of the cooling methods presently in use
  - □ Utilize energy loss in materials with RF re-acceleration


Muon lonization Cooling

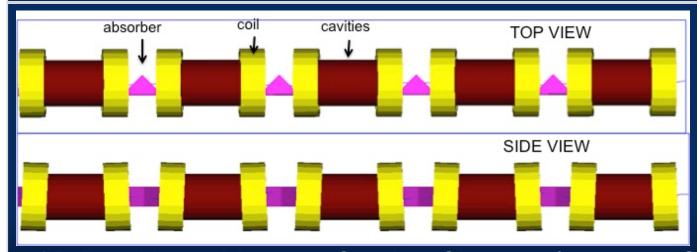


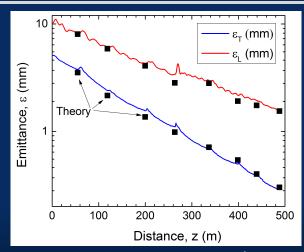
BRUUKH

## Muon Ionization Cooling







## Muon Ionization Cooling (Design)



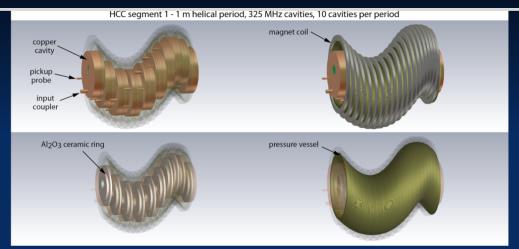


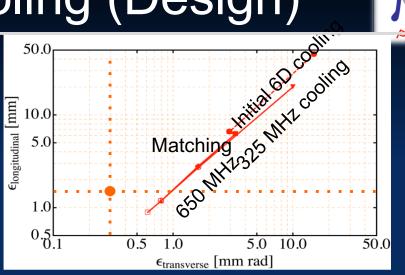



Initial 6D Cooling:  $\varepsilon_{6D}$  60 cm<sup>3</sup>  $\Rightarrow$  ~50 mm<sup>3</sup>; Trans = 67%

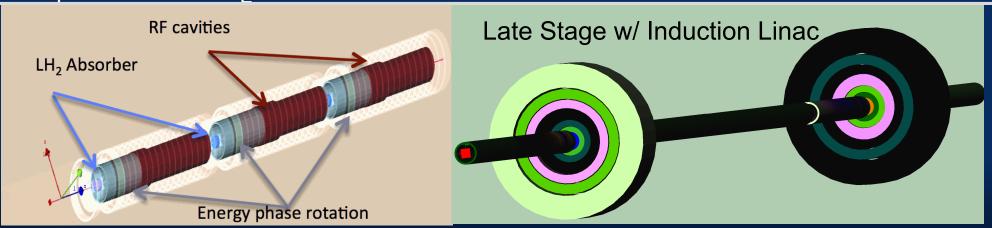





6D Rectilinear Vacuum Cooling Channel (replaces Guggenheim concept):


 $\epsilon_T$  = 0.28mm,  $\epsilon_L$  = 1.57mm @488m Transmission = 55%(40%) without(with) bunch recombination




## Muon Ionization Cooling (Design)



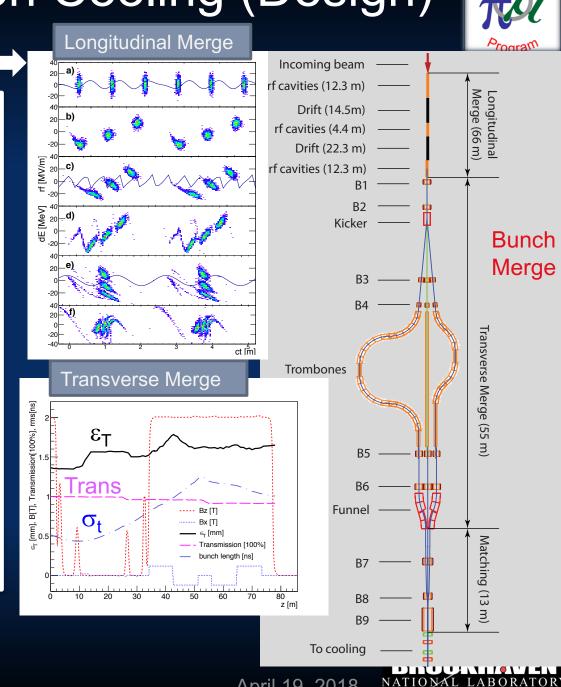




 Helical Cooling Channel (Gas-filled RF Cavities):  $\varepsilon_{\rm T}$  = 0.6mm,  $\varepsilon_{\rm I}$  = 0.3mm



 Final Cooling with 25-30T solenoids (emittance exchange):  $\varepsilon_T = 55 \mu m$ ,  $\varepsilon_L = 75 m m$ 


## Muon Ionization Cooling (Design)

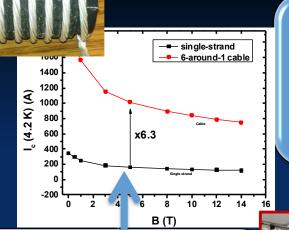


Bunch Merge I

- MAP Baseline Designs offer
  - Factor >10<sup>5</sup> in emittance reduction
- Alternative and Advanced Concepts Higgs Factory
  - Hybrid Rectilinear Channel (gas-filled structures)
  - Parametric Ionization Cooling
  - Alternative Final Cooling One example:
  - ⇒ Early stages of existing scheme ⇒ Round-to-flat Beam Transform

  - ⇒ Transverse Bunch Slicing
  - ⇒ Longitudinal Coalescing (at ~10s of GeV)
  - Considerable promise to exceed our original target parameters




April 19, 2018

## Cooling: The Emittance Path

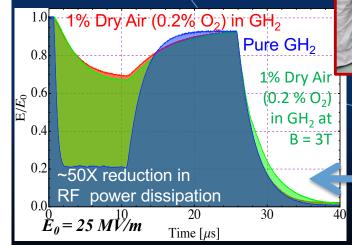




## Cooling Technology R&D



**Successful Operation of** 805 MHz "All Seasons" Cavity in 5T Magnetic Field under Vacuum


MuCool Test Area/Muons Inc

>20MV/m operation in up to 5 T B-field

MICE 201 MHz RF Module -MTA Acceptance Test in B-field Complete 11MV/m in Fringe of 5T Lab-G Solenoid <4×10<sup>-7</sup> Spark Rate (0 observed)

#### **Breakthrough in HTS Cable Performance with Cables Matching Strand Performance**

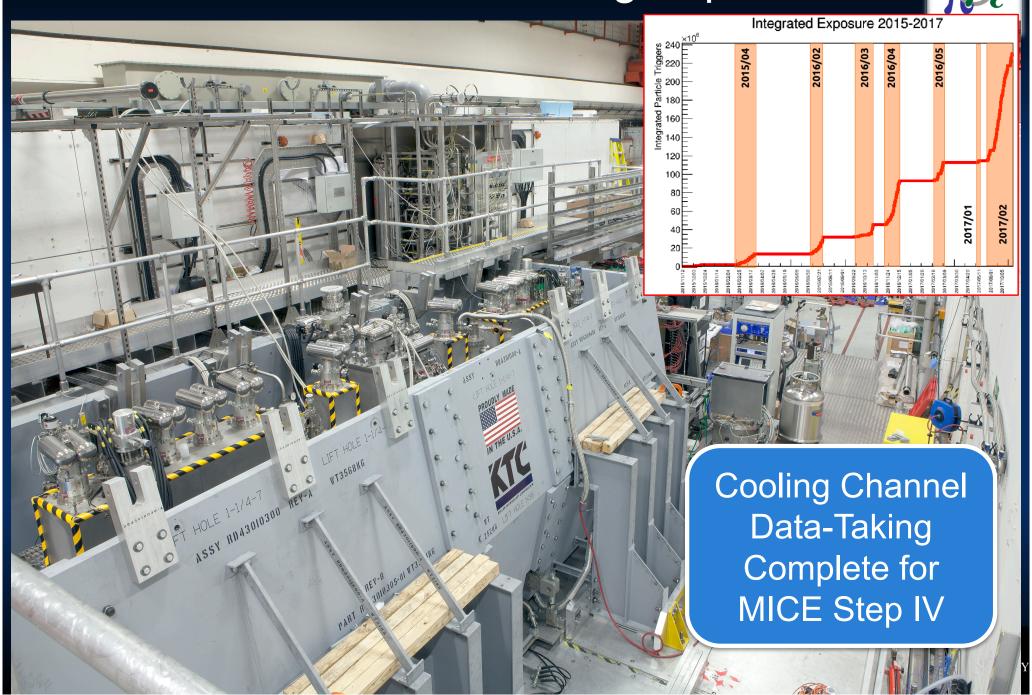
**FNAL-Tech Div** T. Shen-Early Career Award



#### **World Record HTS**only Coil 15T on-axis field (16T on coil)

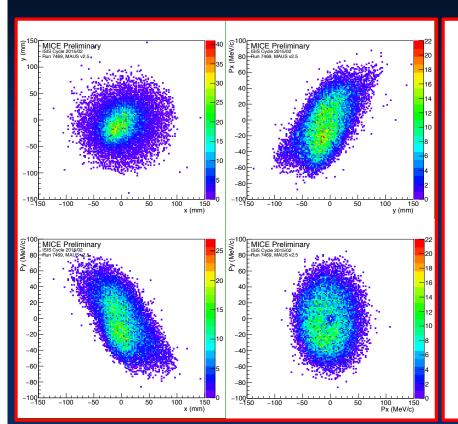
R. Gupta PBL/BN'

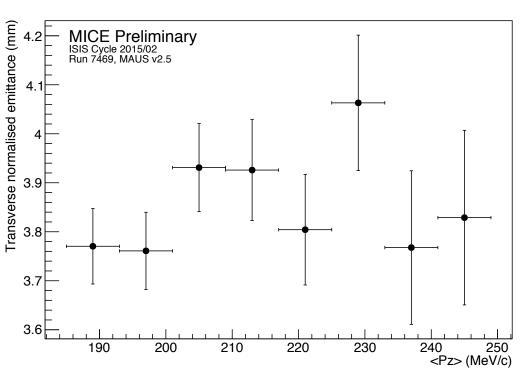
**Demonstration of High** Pressure RF Cavity in 3T Magnetic Field with Beam


> Extrapolates to required μ-Collider Parameters

MuCool Test Area




oril 19. 2018 NATIONAL LABORATORY


## Muon Ionization Cooling Experiment



## Emittance reconstruction







- Reconstruction of emittance "particle-by-particle" in upstream tracker
  - 200 MeV/c muon beam; 4T in upstream solenoid only, first ~2 hours of data taking
- Validates MICE measurement approach
- Data in hand with LiH, LH<sub>2</sub> and "wedge" absorbers
- Preliminary analysis to be presented at IPAC`18



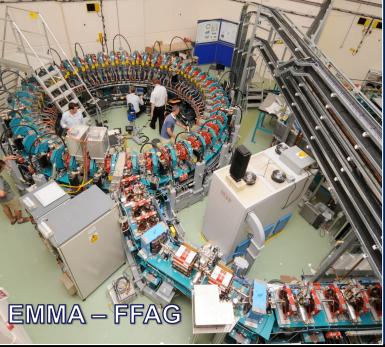
# Ionization Cooling Summary



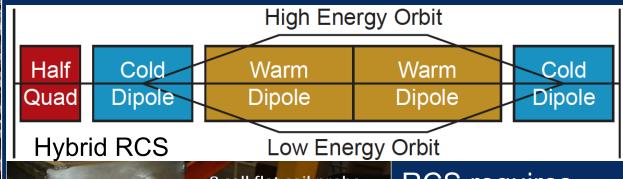
- ✓ 6D Ionization Cooling Designs
  - Designs in hand that meet performance targets in simulations with stochastic effects
  - Ready to move to engineering design and prototyping
  - Able to reach target performance with Nb<sub>3</sub>Sn conductors (NO HTS)
- ✓ RF operation in magnetic field (MTA program)
  - Gas-filled cavity solution successful and performance extrapolates to the requirements of the NF and MC
  - Vacuum cavity performance now consistent with models
  - MICE Test Cavity significantly exceeds specified operating requirements in magnetic field
- ✓ MICE Experiment data now in hand (IPAC18 will provide a look at new results)
- Final Cooling Designs
  - Baseline design meets Higgs Factory specification and performs
    within factor of 2.2× of required transverse emittance for high energy
    MC (while keeping magnets within parameters to be demonstrated
    within the next year at NHMFL).
  - Alternative options under study

# Acceleration Requirements




- Key Issues:
  - Muon lifetime ⇒ ultrafast acceleration chain
  - NF with modest cooling ⇒ accelerator acceptance
  - Total charge ⇒ cavity beam-loading (stored energy)
  - TeV-scale acceleration focuses on hybrid Rapid Cycling
     Synchrotron ⇒ requires rapid cycling magnets
     B<sub>peak</sub> ~ 2T f > 400Hz




## Acceleration



#### Technologies include:



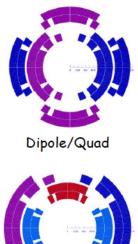
- Superconducting Linacs (NuMAX choice)
- Recirculating Linear Accelerators (RLAs)
- Fixed-Field Alternating-Gradient (FFAG) Rings
- (Hybrid) Rapid Cycling Synchrotrons (RCS) for TeV energies



8 cell flat coil probe Magnet coil wrapped with 30 layers of MLI

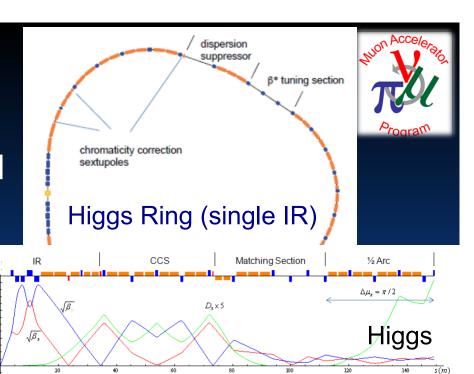
RCS requires 2 T p-p magnets at f > 400 Hz(U Miss & FNAL)

- Design concepts in hand
- ✓ Magnet R&D indicates parameters achievable

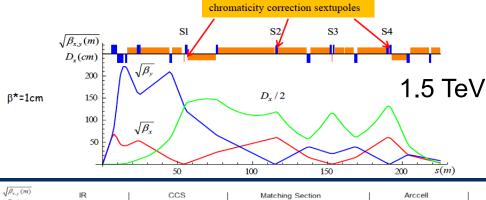

RLA II

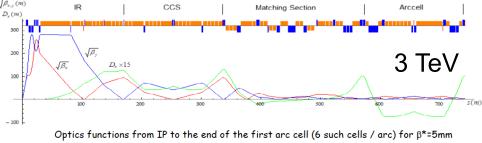
255 m 2 GeV/pass

43


## Collider Rings

- Detailed optics studies for Higgs, 1.5 TeV, 3 TeV and now 6 TeV CoM
  - With supporting magnet designs and background studies
  - Higgs, 1.5 TeV CoM and 3 TeV CoM Designs
    - With magnet concepts
    - Achieve target parameters
  - ✓ Preliminary 6 TeV CoM design
    - Key issue is IR design and impact on luminosity
    - **Utilizes lower** power on target



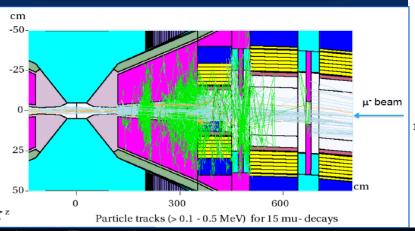



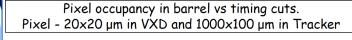

Quad/Dipole



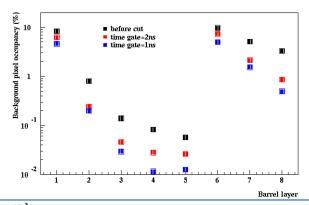
Higgs Factory lattice and optics functions for  $\beta$ \*=2.5cm in a half-ring starting from IP

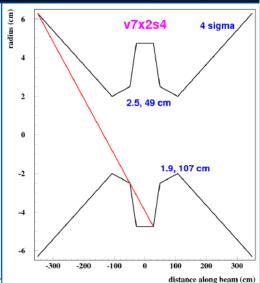


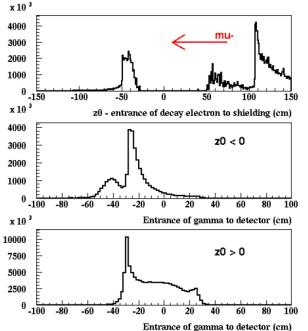


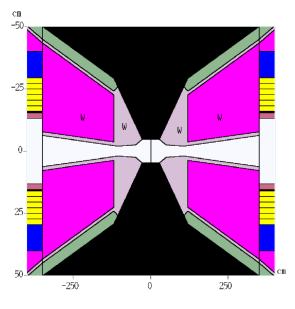


April 19, 2018

## Machine Detector Interface



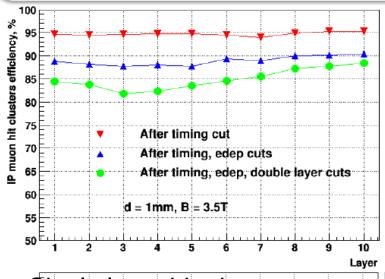


- ✓ Backgrounds appear manageable with suitable detector pixelation and timing rejection
- ✓ Recent study of hit rates comparing MARS, EGS and FLUKA appear consistent to within factors of <2</p>
  - ⇒ Significant improvement in our confidence of detector performance

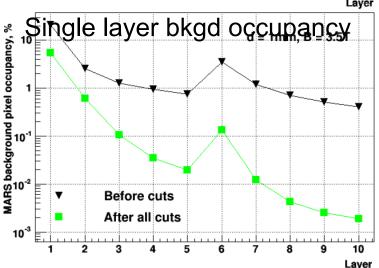



Layer 1-5 are VXD barrel, 6-8 are Tracker barrel








## Detector Backgrounds & Mitigation

Trackers: Employ double-layer structure with 1mm separation for neutral background suppression





#### Dual Readout Projective Calorimeter

Lead glass + scintillating fibers

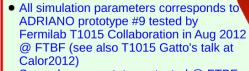
~1.4° tower aperture angle

Split into two separate sections

• Front section 20 cm depth

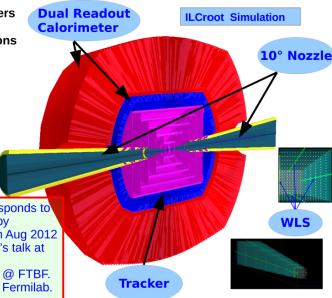
Rear section 160 cm depth

•  $\sim 7.5 \lambda_{int} depth$ 


• >100 X<sub>0</sub> depth

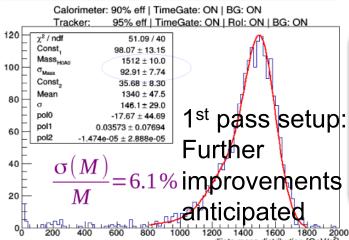
Fully projective geometry

 Azimuth coverage down to ~8.4° (Nozzle)


Barrel: 16384 towers

Endcaps: 7222 towers




Several more prototypes tested @ FTBF.

New test beam ongoing now @ Fermilab.



- Fermilab

#### Time gate & Rol ON – BG ON



✓ Preliminary detector

study promising

 Real progress requires dedicated effort, which MAP was not allowed to fund

BROOKHAVEN

April 19, 2018

### MAP Conclusion

**Accelerator** 

**Cooling Channel** 



Performance

**Emittance Reduction** 

- Multi-TeV MC ⇒ potentially only cost-effective route to lepton collider capabilities with  $E_{CM} > 5 \text{ TeV}$
- Capability strongly overlaps with next generation neutrino source options, i.e., the neutrino factory
- Key technical hurdles have been addressed:
  - High power target demo (MERIT) \* Decays of an individual species (ie, μ<sup>+</sup> or μ<sup>-</sup>)

| MICE                         | 160-240 | MeV     | 5%                                                    |
|------------------------------|---------|---------|-------------------------------------------------------|
| Muon Storage Ring            | 3-4     | GeV     | Useable μ decays/yr*                                  |
| vSTORN                       | 1 3.8   | GeV     | 3x10 <sup>17</sup>                                    |
| Intensity Frontier v Factory | 4-10    | GeV     | Useable μ decays/yr*                                  |
| NuMAX (Initial)              | 4-6     | GeV     | 8x10 <sup>19</sup>                                    |
| NuMAX+                       | 4-6     | GeV     | <i>5x10</i> <sup>20</sup>                             |
| IDS-NF Design                | 10      | GeV     | 5x10 <sup>20</sup>                                    |
| Higgs Factory                | ~126    | GeV CoM | l Higgs/10 <sup>7</sup> s                             |
| s-Channel μ Collider         | ~126    | GeV CoM | 3,500-13,500                                          |
| Energy Frontier μ Collider   | > 1     | TeV CoM | Avg. Luminosity                                       |
| Opt. 1                       | 1.5     | TeV CoM | 1.2x10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| Opt. 2                       | 3       | TeV CoM | 4.4x10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |
|                              |         |         | 21 2 1                                                |

MICE 160 240 MAN

**Energy Scale** 

~200 MeV

Opt. 3

- Realizable cooling channel designs with acceptable performance
- Breakthroughs in cooling channel technology
- Significant progress in collider & detector design concepts

Muon collider capabilities offer unique potential for the future of high energy physics research

 $12x10^{34}cm^{-2}s^{-1}$ 

6 TeV CoM

## LEMMA



- Thank you for the opportunity to meet and discuss the LEMMA concepts in greater detail
- Clearly muon production target issues are extremely challenging – irrespective of the production process!
- I'm very much looking forward to discussing
  - the trade-offs and potential physics reach in greater detail
  - what concepts from MAP may be helpful to LEMMA.





# Thank you for your attention!



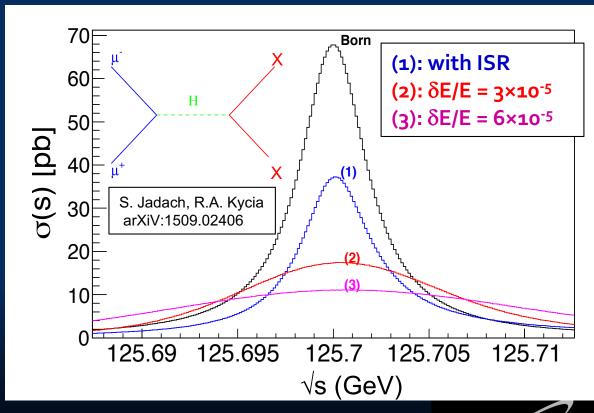


# Backup Slides Follow



## PHYSICS WITH A MUON COLLIDER

# A Higgs Factory

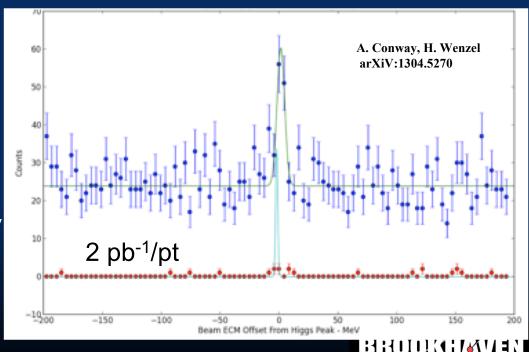



### Direct s-channel production

• 
$$\sigma(\mu^+\mu^- \rightarrow H) \sim$$
  
 $\sigma(e^+e^- \rightarrow H) \times 40,000$ 

- ~14K Higgs/yr (MAP baseline)
- Advanced muon cooling (c.f. Rubbia plan) ⇒ ~5x more rate

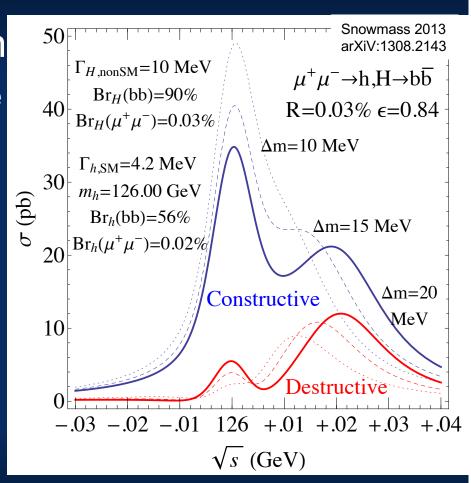
$$\sigma(\mu^{+}\mu^{-} \to H^{0}) = \frac{4\pi\Gamma_{H}^{2}Br(H^{0} \to \mu^{+}\mu^{-})}{(\hat{s} - M_{H}^{2})^{2} + \Gamma_{H}^{2}M_{H}^{2}}$$




# A Higgs Factory



- With a beam energy spread of 0.004%, a Higgs Factory has unique operating features
  - Requires excellent machine energy stability
  - Would utilize a "g-2" technique to monitor the beam energy (Rana and Tollestrup)
    - Electron calorimeter to monitor the decay electrons as the beam polarization precesses in the dipole field of the ring
    - Precision measurement of the oscillation frequency provides the energy
  - An initial energy scan campaign required to locate the resonance
    - Presently know m<sub>H</sub> to ±250 MeV
    - ~2 orders of magnitude smaller with a muon collider


$$v_0 = \frac{g_{\mu} - 2}{2} \times \frac{E_{\text{Beam}}}{m_{\mu}}$$



# A Higgs Factory



- Direct production combined with precise energy resolution
  - Ability to probe detailed structure
  - A full line-shape measurement probes:
    - The Higgs mass, m<sub>H</sub>
    - The Higgs width,  $\Gamma_{\rm H}$
    - The branching ratio into  $\mu^+\mu^-$ , BR(H  $\rightarrow \mu\mu$ ) [and hence  $g_{H\mu\mu}$ ]
  - Look for new physics features
    - Ex: Higgs doublet model



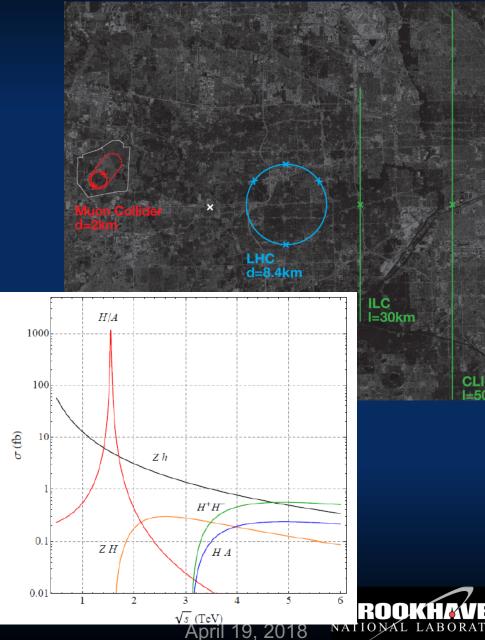


# Higher Energy Colliders



 Multi-TeV lepton collider: required for a thorough exploration of Terascale physics

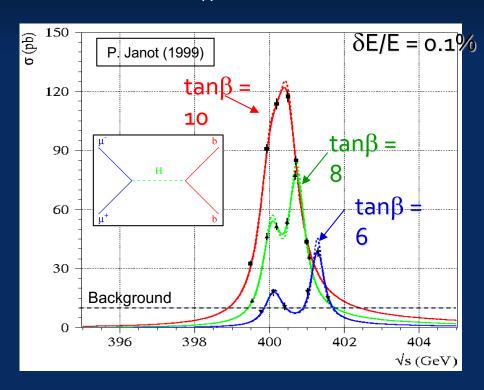
Muon colliders come into their own at energies >2 TeV

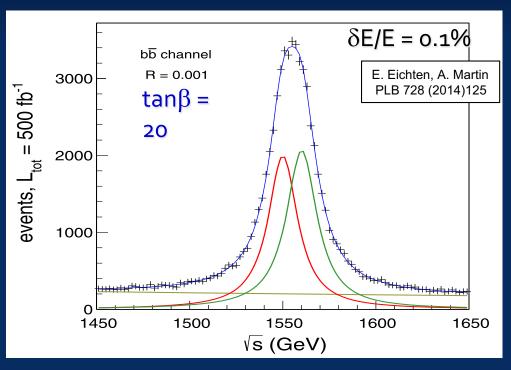

Absolute luminosity

Luminosity per wall-plug power

Compact rings

Excellent energy resolution
 ⇒ disentangle closely-spaced states


Example: Extended Higgs
 Sector and the H/A resonance

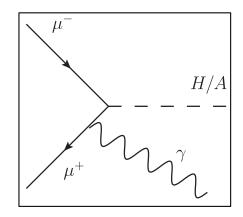



# H/A Examples

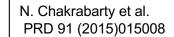
- Arografin
- Can be applied to heavier H and A in 2HDM (e.g., from SUSY)
  - Example 1:  $m_A = 400 \text{ GeV}$

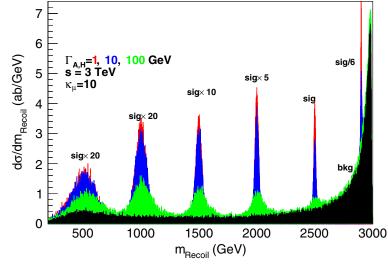
Example 2:  $m_A = 1.55 \text{ TeV}$ 

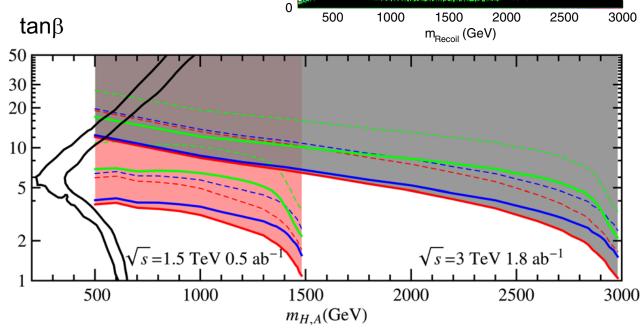





Best performance is ultimately obtained by optimizing the ring for operation at E<sub>COM</sub> of interest


## Additional Higgs bosons (3)


One way to proceed Automatic mass scan with radiative returns in μμ collisions


- Go to the highest energy first
  - $\sqrt{s} = 1.5$ , 3 or 6 TeV
- ◆ Select event with an energetic photon
  - Check the recoil mass  $m_{Recoil} = [s 2E_{\gamma}\sqrt{s}]^{1/2}$



- Can "see" H and A
  - If tanβ > 5
- **Build the next collider** 
  - At √s ~ m<sub>A,H</sub>







## Summary



- Muon colliders offer great potential for exploration of the Terascale
  - May offer the only cost-effective route to a lepton collider operating in the several TeV range
- There are technical challenges examples:
  - Muon cooling technology
  - Detector backgrounds from µ decays
- Let's take a quick look at some of the technology issues
  - Further work is desirable to understand the detailed physics reach given the proposed solutions to those challenges