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Fundamental Physics with
Light-pulse Atom Interferometers (AIs)



Light-pulse AIs & fundamental physics

By measuring the gravitational accelerations of free-falling atoms, AIs can:

• Measure the absolute value of the local gravitational acceleration g (on ground)

• Test the Universality of Free Fall (UFF) or Weak Equivalence Principle
(WEP), in the field of Earth (requires atoms of two different species, can be done on ground

and in space inside s/c in low Earth orbit)

Arranged as gravity gradiometers AIs can:

• Measure the universal constant of gravitation G (on ground)

• Detect the effect of gravitational waves (on ground and in space)

• “Measure” the Earth from space (space geodesy)



Light-pulse AIs:
the principle, the theoretical prediction of the

acceleration measured and the
acceleration measurement error



Light-pulse AIs: the principle

- Light-pulse AIs are based on quantum mechanics

- As atoms fall, by means of 3 atom-light interactions (Raman laser pulses)
the atomic wave packet is split, redirected, and finally recombined.
- The phase that the atoms acquire during the interferometer sequence is
proportional to the gravitational acceleration they are subjected to:

• straight lines: without gravitational acceleration
• curved lines: with gravitational acceleration



Analogy with falling corner-cube absolute gravimeter (I)

• In a light-pulse AI a retroreflected
laser beam is referenced to an
atomic transition; this defines a
ruler (whose graduations are spaced
as λ of the laser) to which the
trajectory of the free-falling atoms
is compared so that its acceleration
is measured.

• Analogy with classical absolute
gravimeters in which the trajectory
of a free-falling corner-cube is
measured by a laser interferometer
to obtain its gravitational
acceleration gmeas.



Analogy with falling corner-cube absolute gravimeter (II)

• Advantage
- In AIs atoms provide at the same time the test mass and the read-out of its
motion

- In the classical gravimeter a laser interferometer reads the motion of a falling
body equipped as corner cube reflector

• Disadvantage
- The falling cube provides hundreds up to a thousand time-position
measurements per drop

- AIs have only 3 position measurements per drop at their disposal, at pulse
times 0, T, 2T , from which to obtain the free-fall acceleration . . . and this is going
to affect the measurement



δφ and gmeas can be predicted with a purely classical model

A. Peters, PhD Thesis 1998 (Nature 1999, Metrologia 2001):

- The scale factor between the phase shift δφ and gmeas depends on Raman vector
k and pulse time T , which are both controlled experimentally:

δφ = kT 2gmeas

- “We can simply ignore the quantum nature of the atom and model it as a
classical point particle that carries an internal clock and can measure the local
phase of the light field”
- The purely classical description yields the same result as the exact
path integral treatment (in closed form!). The solution is then expanded in
powers of the gravity gradient γ for convenience
- The procedure is based on only 3 position measurements of the atom
available at times 0, T, 2T of the 3 Raman pulses
- Quantum mechanical details are needed only to account for smaller effects...
(e.g. finite length of pulse time)



The classical model revisited (I)

• Include the possibility of WEP violation (hence UFF violation) in the model:

mg
A,B = mi

A,B(1 + ηA,B)

ηA = ηB = 0 if WEP holds

• Eq. of motion and solution to first order in gradient γ = 2g◦/R⊕ ' 3.1 · 10−6 s−2:
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z◦A,B, v
◦
A,B position and velocity errors of atoms at release, Initial Condition Errors - ICE



The classical model revisited (II)

• Definition of phase shift measured by AI:

δφA,B = [φA,B(2T )− 2φA,B(T )− φA,B(0)] = kT 2[zA,B(2T )− 2zA,B(T )− zA,B(0)] =

= kT 2
[zA,B(2T )− zA,B(T )

T 2
− zA,B(T )− zA,B(0)

T 2

]
• With the solution zA,B(t) the predicted phase shift and gA,Bmeas are:

δφA,B(T ) ' −kT 2
[
g◦(1 + ηA,B) + γ

( 7

12
g◦T

2 − v◦A,BT − z◦A,B
)]

gA,Bmeas ' g◦(1 + ηA,B) + γ
( 7

12
g◦T

2 − v◦A,BT − z◦A,B
)

with ηA,B = 0 (no violation) this is the correct result, accepted by all scientists, for the free-fall

acceleration of the atoms measured by AIs, no matter which approach is used to compute it,

exact path integral or purely classical



Systematic error in the acceleration measured by AIs

• Free-fall acceleration at time T : theory

gA,B theory ' g◦(1 + ηA,B) + γ
(1

2
g◦T

2 − v◦A,BT − z◦A.B
)

• Free-fall acceleration at time T : measured

gA,Bmeas ' g◦(1 + ηA,B) + γ
( 7

12
g◦T

2 − v◦A,BT − z◦A,B
)

• Systematic measurement error:

∆a =
1

12
γg◦T

2

Fractional error:

∆a

g◦
=

1

12
γT 2 (γ ' 3.1 · 10−6 s−2 , T . 1 s)⇒ not negligible . . .



Acceleration error in space

• E.g. experiment inside ISS (r ' 6800 km, e ' 0, gorb ' 8.7 ms−2), Earth
pointing, AI axis along radial direction, atoms dropped at nominal distance h
from CM of s/c where

γorb = 3
gorb
r
' 3.8 · 10−6 s−2 atide = γorbh

• Free-fall acceleration at time T : theory Nobili et al., GRG (2008)

aA,B theory ' atide + gorbηA,B + γorb
(1

2
atideT

2 − Υ◦A,BT − ζ◦A.B
)

• Free-fall acceleration at time T : measured

aA,Bmeas ' atide + gorbηA,B + γorb
( 7

12
atideT

2 − Υ◦A,BT − ζ◦A,B
)

• Systematic measurement error:

∆aorb =
1

12
γatideT

2 , Fractional error
∆aorb
atide

=
1

12
γorbT

2 as on ground



Position and velocity errors at atoms’ release:
effect, reduction & role of the
acceleration measurement error



Reduction of the effect of ICE and gravity gradient (I)

• Effect of gravity gradient:

Roura, PRL (2017)



Reduction of the effect of ICE and gravity gradient (II)

• An extra ∆k at the second (middle) laser pulse compensates the gradient effect exactly if (Roura, PRL

(2017)): k2 = k + ∆k = k + 1
2
γT 2k exactly



Gradient term that is not compensated: on ground

• In reality compensation is not exact; in addition a residual un-compensated
acceleration remains:

δφ∆k
A,B(T ) ' −kT 2

[
g◦(1 + ηA,B)− γres(z◦A,B + v◦A,BT ) +

1

12
γg◦T

2)
]

γres ' 10−2γ demonstrated experimentally by fine tuning of the laser frequency
(Kasevich’s group, PRL (2018))

• Term with un-compensated gradient remains: ∆a = 1
12
γg◦T

2

Pointed out in a Comment by Dubetsky PRL (2018), accepted in Roura’s Reply PRL (2018)

This work: The reason why it is not compensated is because the motion of the atoms is as

predicted by theory, while the phase shift & acceleration used to compensate for the effect of

gradient on their motion by fine tuning of laser frequency is wrong by this term ⇓
In fact, it SHOULD NOT be compensated!



Gradient term that is not compensated: in space

• In space k2 = k + ∆k = k + 1
2
γorbT

2k for “exact” compensation:

δΦ∆k
A,B orb(T ) ' −kT 2

[
atide + gorbηA,B − γorb res(ζ◦A,B + Υ◦A,BT ) +

1

12
γorbatideT

2
]

∆a =
1

12
γorbatideT

2

fractional error
∆a

atide
=

1

12
γorbT

2 as on ground



Consequences of the
acceleration measurement error



Effect of acceleration error on absolute measurement of g

• Freely falling corner cube retroreflector monitored by laser interferometry (FG5 absolute gravimeter):
∆g
g

= 1.1× 10−9 Niebauer et al., Metrologia (1995)

• Dropped Cs cold atom cloud monitored by light-pulse atom interferometry: ∆g
g
' 3× 10−9

Peters, Chung & Chu, Nature (1999); Metrologia (2001)

gmeas ' g◦ + γ
( 7

12
g◦T

2 − v◦T − z◦
)

At this level (and with T = 160 ms) the systematic effects to order γ have required careful checks by

means of many measurements in different experimental conditions (e.g. with different free fall times) to

model and reduce them below the target.... then, acceleration error 1
12γg◦T

2 also below the target

• If T can be increased, for better sensitivity, and Roura’s scheme is applied to reduce the gradient and relax

requirement on ICE (as γ/γres ' 102), then the acceleration error 1
12γg◦T

2 becomes dominant:

g∆k
meas ' g◦ − γres

(
z◦ + v◦T

)
+

1

12
g◦γT

2



Dominant errors in tests of UFF by dual AI on ground (I)

• Different atoms A,B are dropped in a Dual Atom Interferometer (DAI) individual phase shifts

are measured, their difference is calculated and checked to detect a violation. The gradient term

with 7/12 or 1/12 coefficient cancels out in the difference.

• Unless the same laser is used for both species the time pulse interval may differ by ∆T , and

there is a requirement on it:

δφ∆T
B − δφA ' −kT 2

[
g◦
(
η + 2

∆T

T

)
− γ

(
z◦B − z◦A + (v◦B − v◦A)T

)]
∆T
T

competes directly with η = ηB − ηA because the phase shift grows as T 2:

∆T

T
<
η

2
= 5 · 10−14 for ηcurrent ' 10−13

. . . only to match current best ground tests by torsion balances. Extremely
hard to meet ⇒

extremely hard to test very different atom species!!



Dominant errors in tests of UFF by dual AI on ground
(II)

• Most DAIs test 87Rb and 85Rb, same laser can be used, no synchronization problem (but atoms differ by 2

neutrons only. . . )

• The dominant error is due to position and velocity offsets at release coupled with γ.

• Roura’s scheme can be applied to reduce it:

δφ∆k
B − δφ∆k

A ' −kT 2
[
g◦η − γres

(
z◦B − z◦A + (v◦B − v◦A)T

)]
z◦B − z◦A + (v◦B − v◦A)T < η

g◦
γres

• The requirement is relaxed as γ/γres ' 102 but initial offsets must meet it in all drops, and must

be measured for demonstration, otherwise no violation can ever be claimed

Nobili, PRA (2016), Roura PRL (2017)



Dominant errors in tests of UFF by dual AI in space

• If 2 lasers must be used for 2 atoms species, the requirement on ∆T in space in not a show

stopper as it is as on ground:

δφB orb − δφAorb ' kT 2
[
gorbη + 2

∆T

T
atide − γorb

(
ζ◦B − ζ◦A + (Υ◦B − Υ◦A)T

)]
∆T

T
<
η

2

gorb
atide
' 1.1 · 10−9

for η = 2× 10−15, h ' 2 m (atide = γorbh)

• Applying Roura’s scheme to reduce the gradient, it must also be

ζ◦B − ζ◦A + (Υ◦B − Υ◦A)T < η
gorb
γorb res



Effect of acceleration error in gravity gradiometry with
AIs on ground

• A, B same species but vertical separation h; B higher than A where g◦ = GM⊕
R2

⊕
, γ = 2g◦

R⊕
; tidal acceleration in

B is atide = γh :

g◦B ' g◦ − γh γB ' γ − 3

2

atide
R⊕

• The gradiometer measures:

gBmeas − gAmeas ' −
[
atide + γ

(49

48
atideT

2 + (v◦B − v◦A)T + z◦B − z◦A
)]

• While the theory predicts:

gB theory − gA theory ' −
[
atide + γ

(7

8
atideT

2 + (v◦B − v◦A)T + z◦B − z◦A
)]

with a systematic fractional error that cannot be neglected because the gradiometer’s signal is atide, not g◦:

∆a

atide
' 7

48
γT 2



Effect of acceleration error in gravity gradiometry with
AIs in space

• A, B same species but radial separation ∆h :

δφB − δφA ' kT 2
[
γorb∆h + γorb

( 7

12
γorb∆hT

2 + (Υ◦B − Υ◦A)T + ζ◦B − ζ◦A
)]

• If Roura’s scheme is applied to reduce the gradient, still one un-compensated term remains:

δφ∆k
B − δφ∆k

A ' kT 2
[
γorb∆h+ γorb res

(
Υ◦B −Υ◦A)T + ζ◦B − ζ◦A

)
+

1

12
γorb(γorb∆h)T 2

]
with a fractional systematic error to first order in γorb, which is the target of the measurement:

∆a

γA∆h
=

1

12
γorbT

2



Conclusions



1st message

AIs are based on quantum mechanics but their measurement can be predicted with
a purely classical model.



2nd message

Within the classical model it becomes apparent, beyond question, that the free-fall
acceleration of the atoms is measured only approximately.

This is because –by its very nature– the AI relies on only 3 time-position
measurements per drop. Unlike the falling corner-cube reflector of a classical
gravimeter which can count on hundreds to a thousand data points per drop to
which the theoretical time law is compared to obtain the free-fall measured

acceleration.



3rd message

The result is a systematic acceleration error, both on ground and in space, which
is important and deserves attention by all scientists using AIs for fundamental

physics (on ground and in space) and for space geodesy.


