Numerical relativity: what we knew **before** and what we know **after**GW170817

Luciano Rezzolla

Institute for Theoretical Physics, Frankfurt

R. Gill, E. Most, A. Nathanail, J. Schaffner-Bielich, L. Weih

Plan of the talk

- * The richness of merging binary neutron stars
- * GW spectroscopy: EOS from frequencies
- * GW170817: a number of lessons
 - → Maximum-mass constraints
 - → Radius constraints
 - ◆ What happened to GW170817's remnant?
- * Signatures of quark-hadron phase transitions see transition see transitions see transitions
- * Magnetic fields and EM counterparts
- * Ejected mass and nucleosynthesis

The two-body problem in GR

• For BHs we know what to expect:

• For NSs the question is more **subtle:** hyper-massive neutron star (HMNS), ie

• HMNS phase can provide clear information on EOS

• BH+torus system may tell us on the central engine of GRBs

The two-body problem in GR

• For BHs we know what to expect:

• For NSs the question is more **subtle**: the merger leads to an hyper-massive neutron star (HMNS), ie a metastable equilibrium:

ejected matter
 undergoes
 nucleosynthesis of
 heavy elements

A prototypical simulation with possibly the best code looks like this...

merger ---> HMNS ---> BH + torus

merger ---> HMNS ---> BH + torus

Quantitative differences are produced by:

- total mass (prompt vs delayed collapse)
- mass asymmetries (HMNS and torus)
- soft/stiff EOS (inspiral and post-merger)
- magnetic fields (equil. and EM emission)
- radiative losses (equil. and nucleosynthesis)

GW spectroscopy and how to constrain the EOS

Baiotti, Bose, LR, Takami PRL, PRD (2015-2018)

Anatomy of the GW signal

Postmerger signal: peculiar of binary NSs

In frequency space

What we can do nowadays

Takami, LR, Baiotti (2014, 2015), LR+ (2016)

Extracting information from the EOS

Takami, LR, Baiotti (2014, 2015), LR+ (2016)

A spectroscopic approach to the EOS

Oechslin+2007, Baiotti+2008, Bauswein+ 2011, 2012, Stergioulas+ 2011, Hotokezaka+ 2013, Takami 2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, Clark+ 2016, LR+2016, de Pietri+ 2016, Feo+

2017, Bose+ 2017 ...

merger frequency

A spectroscopic approach to the EOS

Oechslin+2007, Baiotti+2008, Bauswein+2011, 2012, Stergioulas+2011, Hotokezaka+2013, Takami 2014, 2015, Bernuzzi 2014, 2015, Bauswein+ 2015, Clark+ 2016, LR+2016, de Pietri+ 2016, Feo+

stergioulas' talk

merger frequency

GW170817, maximum mass, radii and tidal deformabilities

LR, Most, Weih, ApJL (2018) Most, Weih, LR, Schaffner-Bielich, PRL (2018)

• The remnant of GW170817 was a hypermassive star, i.e. a differentially rotating object with initial **gravitational** mass $M_1+M_2=2.74^{+0.04}_{-0.01}M_{\odot}$

• Sequences of equilibrium models of nonrotating stars will have a maximum mass: $M_{\rm TOV}$

• The remnant of GW170817 was a hypermassive star, i.e. a differentially rotating object with initial **gravitational** mass $M_1 + M_2 = 2.74^{+0.04}_{-0.01} M_{\odot}$

- Sequences of equilibrium models of nonrotating stars will have a maximum mass: $M_{\scriptscriptstyle {
 m TOV}}$
- This is true also for **uniformly** rotating stars at mass shedding limit: $M_{\rm max}$
- $M_{
 m max}$ simple and quasiuniversal function of $M_{
 m TOV}$ (Breu & LR 2016)

$$M_{\text{max}} = (1.20^{+0.02}_{-0.05}) M_{\text{TOV}}$$

• The remnant of GW170817 was a hypermassive star, i.e. a differentially rotating object with initial **gravitational** mass $M_1+M_2=2.74^{+0.04}_{-0.01}M_{\odot}$

- Green region is for uniformly rotating equilibrium models.
- •Salmon region is for differentially rotating equilibrium models.
- Stability line is simply extended (Weih+18)

- •GW I 708 I 7 produced object as "x"; GRB implies a BH has been formed: "x" followed two possible tracks: fast (2) and slow (1)
- It rapidly produced a BH when still differentially rotating (2)
- It lost differential rotation leading to a uniformly rotating core (1).
- •(I) is much more likely because of large ejected mass (long lived).
- Final mass is near $M_{\rm max}$ and we know this is universal!

let's recap...

- The merger product of GW170817 was initially differentially rotating but collapsed as uniformly rotating object.
- •Use measured gravitational mass of GW170817
- Remove rest mass deduced from kilonova emission
- Use universal relations and account errors to obtain

pulsar timing

$$2.01^{+0.04}_{-0.04} \le M_{\text{TOV}}/M_{\odot} \lesssim 2.16^{+0.17}_{-0.15}$$

universal relations and GW170817; similar estimates by other groups

Limits on radii and deformabilities

• Can new constraints be set on typical radius and tidal deformability by using GW170817?

• Ignorance can be parameterised and EOSs can be built arbitrarily as long as they satisfy specific constraints on low and high densities.

parametrising our ignorance

Construct most generic family of NS-matter EOSs

from µ_b=2.6GeV NNLO pQCD Kurkela+ (2014) Fraga+ (2014)

interpolation by matching 4 polytropes

polytropic fit of Drischler+ (2016) (large impact on results)

Mass-radius relations

• We have produced 106 EOSs with about 109 stellar models.

 Can impose differential constraints from the maximum mass and from the tidal deformability from GW170817

one-dimensional cuts

- Closer look at a mass of $M=1.40\,M_{\odot}$
- Can play with different constraints on maximum mass and tidal deformability.
- Overall distribution is very robust

 $12.00 < R_{1.4}/\text{km} < 13.45$

 $R_{1.4} = 12.45 \,\mathrm{km}$

and many more estimates...

Constraining tidal deformability

- Can explore statistics of all properties of our 109 models.
- ullet In particular can study PDF of tidal deformability: $\tilde{\Lambda}$
- LIGO has already set upper limit:

$$\tilde{\Lambda}_{1.4} \lesssim 800$$
 $70 < \tilde{\Lambda}_{1.4} < 720$

•Our sample sets a lower limit:

$$\tilde{\Lambda}_{1.4} > 375$$

largest so far.

When did the merger of GW170817 collapse to a BH?

Gill, Nathanail, LR (2019)

Why is this important?

Conservative assumption: the remnant of GW170817 collapsed to a BH. GRB observed at $t_{\rm del} = 1.74 \pm 0.05 \, {\rm s}$

However, when did it actually collapse?

- •If collapsed too early, not enough matter ejected for observed kilonova
- •If collapsed too late, delay in the GRB would have been longer than 1.74 s.
- The more the mass ejected, the longer for the jet to bore its way and breakout.

Ejection of mass

•After merger mass is lost in many different channels (shock heating, neutrino or magnetic-driven winds) and on very different timescales (dynamical and secular).

Ejection of mass

- •Shown are the mass-ejection rates from numerical simulations.
- $ullet M_{
 m dyn}$: matter ejected dynamically
- M_{ν} : matter ejected via neutrinodriven winds
- $^{ullet}\,M_{
 m B}$: matter ejected via magnetically driven winds

All channels have contribution from the central object and the disk.

All channels provide both blue or red ejecta in different amounts.

Constraints from mass ejection

- Shown are the mass contributions (blue/red) on "long" timescales.
- •Blue ejecta essentially stops after collapse and constraints collapse time from mass ejection to be

$$t_{\rm coll} = 1.14^{+0.60}_{-0.50} \text{ s}$$

Constraints from breakout

•Given measured $t_{\rm del}$ we can constrain collapse time from breakout to be

$$t_{\rm coll} = 0.82 \pm 0.15 \text{ s}$$

 $t_{\rm del} = 1.74 \pm 0.05 \,\mathrm{s} = t_{\rm coll} + t_{\rm br}(t_{\rm coll}) + t_R$

• Breakout time depends on collapse time, speed of ejecta jet opening angle, and energy injected (i.e., more and faster ejecta, longer time to escape).

Putting things together

• Can combine two constraints and their uncertainties to obtain a single estimate

$$t_{\text{coll}} = 0.98^{+0.31}_{-0.26} \text{ s}$$

- What are the implications?
 - *correlates $M_{
 m ej,blue}$ and $t_{
 m coll}$: to be tested new detections
 - *much longer than what can be simulated accurately (~0.1 s)

- *mechanisms other than GWs for loss of angular momentum: spin down due to dipolar EM radiation appears reasonable
- *this implies $B\gtrsim 10^{16}\,\mathrm{G}$ need to be produced after merger

Conclusions

- *Spectra of post-merger shows peaks, some "quasi-universal".
- *When used together with tens of observations, they will set tight constraints on EOS: radius known with ~I km precision.
- *GWI70817 has already provided new limits on

$$2.01^{+0.04}_{-0.04} \le M_{\mathrm{TOV}}/M_{\odot} \lesssim 2.16^{+0.17}_{-0.15}$$
 maximum mass

$$12.00 < R_{1.4}/{
m km} < 13.45$$
 $\tilde{\Lambda}_{1.4} > 375$ radius, tidal deformability

*First constraints on lifetime of GW170817 remnant $t_{\rm coll} = 0.98^{+0.31}_{-0.26} {
m s}$

Gravitational physics is living its Renaissance! Also this time Europe will be its main centre.