Topics in mathematical relativity

Piotr T. Chruściel

University of Vienna

Rome, February 2019
Recent progress on mathematical GR

Plan of the talk

- Asymptotics in the radiation regime
Asymptotics in the radiation regime
Recent progress on mathematical GR
Plan of the talk (Hintz & Vasy 2017; Klainerman & Szeftel; Dafermos, Holzegel, Rodnianski & Taylor 2018)

- Asymptotics in the radiation regime
- Stability of Schwarzschild
Recent progress on mathematical GR
Plan of the talk (Hintz & Vasy 2017 ; Klainerman & Szeftel; Dafermos, Holzegel, Rodnianski & Taylor 2018 & 2019)

- Asymptotics in the radiation regime
- Stability of Schwarzschild (Kerr?)
Recent progress on mathematical GR

Plan of the talk (Hintz & Vasy 2016 & 2017; Klainerman & Szeftel; Dafermos, Holzegel, Rodnianski & Taylor 2018 & 2019)

- Asymptotics in the radiation regime
- Stability of Schwarzschild (Kerr?) and Kerr-de Sitter
Recent progress on mathematical GR
Plan of the talk (Hintz & Vasy 2016 & 2017; Klainerman & Szeftel; Dafermos, Holzegel, Rodnianski & Taylor 2018 & 2019; Schoen & Yau 2017)

- Asymptotics in the radiation regime
- Stability of Schwarzschild (Kerr?) and Kerr-de Sitter
- Positivity of ADM energy \textit{in higher dimensions}
Asymptotics in the radiation regime
Stability of Schwarzschild (Kerr?) and Kerr-de Sitter
Positivity of hyperbolic energy \textit{in higher dimensions}
Definition (Penrose, 1962)

- Gravitational radiation can be defined by adding smoothly a **conformal boundary at infinity**, called **Scri**, to the space-time.

- A space-time is called **asymptotically simple** if every **maximally extended null geodesic** has an initial point and a final point at the conformal boundary at infinity.

Key idea: the large-distance gravitational field is studied by local analysis near the conformal boundary at infinity.

Theorem (PTC, Delay, 2003)

There exists a large class of non-trivial vacuum asymptotically simple space-times.

The proof relies heavily upon deep results of **Friedrich**, and of **Corvino and Schoen**. This is a small data result.
Gravitational radiation à la Penrose

Definition (Penrose, 1962)

- Gravitational radiation can be defined by adding smoothly a conformal boundary at infinity, called Scri, to the space-time.
- A space-time is called asymptotically simple if every maximally extended null geodesic has an initial point and a final point at the conformal boundary at infinity.

Key idea: the large-distance gravitational field is studied by local analysis near the conformal boundary at infinity.

Theorem (PTC, Delay, 2003)

There exists a large class of non-trivial vacuum asymptotically simple space-times.

The proof relies heavily upon deep results of Friedrich, and of Corvino and Schoen. This is a small data result.
Gravitational radiation à la Penrose

Definition (Penrose, 1962)

- Gravitational radiation can be defined by adding smoothly a *conformal boundary at infinity*, called \(\text{Scri} \), to the space-time.
- A space-time is called *asymptotically simple* if every *maximally extended null geodesic* has an initial point and a final point at the conformal boundary at infinity.

Key idea: the large-distance gravitational field is studied by local analysis near the conformal boundary at infinity

Theorem (PTC, Delay, 2003)

There exists a large class of non-trivial vacuum asymptotically simple space-times.

The proof relies heavily upon deep results of Friedrich, and of Corvino and Schoen. This is a small data result.
Gravitational radiation à la Penrose

Definition (Penrose, 1962)

- Gravitational radiation can be defined by adding smoothly a conformal boundary at infinity, called Scri, to the space-time.
- A space-time is called asymptotically simple if every maximally extended null geodesic has an initial point and a final point at the conformal boundary at infinity.

Key idea: the large-distance gravitational field is studied by local analysis near the conformal boundary at infinity.

Theorem (PTC, Delay, 2003)

There exists a large class of non-trivial vacuum asymptotically simple space-times.

The proof relies heavily upon deep results of Friedrich, and of Corvino and Schoen. This is a small data result.
Gravitational radiation à la Penrose

Definition (Penrose, 1962)

- Gravitational radiation can be defined by adding smoothly a *conformal boundary at infinity*, called Scri, to the space-time.
- A space-time is called *asymptotically simple* if every *maximally extended null geodesic* has an initial point and a final point at the conformal boundary at infinity.

Key idea: the large-distance gravitational field is studied by local analysis near the conformal boundary at infinity.

Theorem (PTC, Delay, 2003)

There exists a large class of *non-trivial* vacuum asymptotically simple space-times.

The proof relies heavily upon deep results of Friedrich, and of Corvino and Schoen. This is a small data result.
Definition (Penrose, 1962)

- Gravitational radiation can be defined by adding smoothly a *conformal boundary at infinity*, called *Scri*, to the space-time.
- A space-time is called *asymptotically simple* if every *maximally extended null geodesic* has an initial point and a final point at the conformal boundary at infinity.

Key idea: the large-distance gravitational field is studied by local analysis near the conformal boundary at infinity.

Theorem (PTC, Delay, 2003)

There exists a large class of *non-trivial* vacuum asymptotically simple *space-times*.

The proof relies heavily upon deep results of *Friedrich*, and of *Corvino and Schoen*. This is a *small data* result.
Gravitational radiation à la Penrose
What about generic initial data? Penrose uses smooth functions throughout

Definition

A function is called polyhomogeneous at null infinity if it admits an asymptotic expansion of the form

$$f(u, r, \theta, \phi) = \sum_{i \geq 0, j \leq N} f_{ij}(u, \theta, \phi) r^{-i} \ln^{j}(r) = f_{00}(u, \theta, \phi) + \ldots,$$

for some sequence $N(i)$, $i(0) = 0$.

A metric is called polyhomogeneous at null infinity if the metric functions $g_{\mu\nu} - \eta_{\mu\nu}$ where $\eta_{\mu\nu}$ is the Minkowski metric, are polyhomogeneous and tend to zero as $r \to \infty$.
What about generic initial data? Penrose uses smooth functions throughout.

Definition

- A function is called **polyhomogeneous at null infinity** if it admits an asymptotic expansion of the form

\[
f(u, r, \theta, \varphi) = \sum_{i \geq 0, j \leq N(i)} f_{ij}(u, \theta, \varphi) r^{-i} \ln^j(r)
\]

\[
= f_{00}(u, \theta, \varphi) + \ldots ,
\]
A function is called **polyhomogeneous at null infinity** if it admits an asymptotic expansion of the form

\[
f(u, r, \theta, \varphi) = \sum_{i \geq 0, j \leq N(i)} f_{ij}(u, \theta, \varphi) r^{-i} \ln^j(r)
\]

\[
= f_{00}(u, \theta, \varphi) + \ldots ,
\]

for some sequence \(N(i), i(0) = 0 \).
Definition

- A function is called **polyhomogeneous at null infinity** if it admits an asymptotic expansion of the form

\[
\begin{align*}
f(u, r, \theta, \varphi) &= \sum_{i \geq 0, j \leq N(i)} f_{ij}(u, \theta, \varphi) r^{-i} \ln^j(r) \\
&= f_{00}(u, \theta, \varphi) + \ldots,
\end{align*}
\]

for some sequence \(N(i), i(0) = 0 \). Think of \(u \) as \(t - r \)
Gravitational radiation à la Penrose
What about generic initial data? Penrose uses smooth functions throughout

Definition

- A function is called **polyhomogeneous at null infinity** if it admits an asymptotic expansion of the form

\[
f(u, r, \theta, \varphi) = \sum_{i \geq 0, j \leq N(i)} f_{ij}(u, \theta, \varphi) r^{-i} \ln^j(r)
\]

for some sequence \(N(i), i(0) = 0 \). Think of \(u \) as \(t - r \)

- A metric is called **polyhomogeneous at null infinity** if the metric functions

\[
g_{\mu\nu} - \eta_{\mu\nu}
\]

where \(\eta_{\mu\nu} \) is the Minkowski metric, are polyhomogeneous and tend to zero as \(r \to \infty \)
Equivalently, Penrose’s asymptotic conditions hold with polyhomogeneous rather than smooth metric functions.
Equivalently, Penrose’s asymptotic conditions hold with polyhomogeneous rather than smooth metric functions.

Smooth asymptotically simple space-times are polyhomogeneous in a trivial way.
Gravitational radiation à la Penrose

What about *generic* initial data? Penrose uses smooth functions throughout. Andersson, PTC & Friedrich 1992

- Equivalently, Penrose’s asymptotic conditions hold with polyhomogeneous rather than smooth metric functions.
- *Smooth* asymptotically simple space-times are polyhomogeneous in a trivial way.
- Generic hyperboloidal initial data are known to be *non-trivially* polyhomogeneous.
Equivalentlly, Penrose’s asymptotic conditions hold with polyhomogeneous rather than smooth metric functions.

Smooth asymptotically simple space-times are polyhomogeneous in a trivial way.

Generic hyperboloidal and characteristic initial data are known to be *non-trivially* polyhomogeneous.
Equivalently, Penrose’s asymptotic conditions hold with polyhomogeneous rather than smooth metric functions.

Smooth asymptotically simple space-times are polyhomogeneous *in a trivial way*

Generic hyperboloidal and characteristic initial data are known to be *non-trivially* polyhomogeneous

Theorem (Hintz, Vasy, arXiv:1711.00195)

- General relativistic initial data which have an expansion in inverse powers of r lead to spacetimes with a polyhomogeneous Scri.
Gravitational radiation à la Penrose

- **Equivalently**, Penrose’s asymptotic conditions hold with polyhomogeneous rather than smooth metric functions.
- **Smooth** asymptotically simple space-times are polyhomogeneous in a trivial way
- **Generic** hyperboloidal and characteristic initial data are known to be *non-trivially* polyhomogeneous

Theorem (Hintz, Vasy, arXiv:1711.00195)
- General relativistic initial data which have an expansion in inverse powers of \(r \) lead to spacetimes with a polyhomogeneous \(\text{Scri} \).
- This holds globally if the data are sufficiently near to Minkowski ones
Equivalently, Penrose’s asymptotic conditions hold with polyhomogeneous rather than smooth metric functions.

Smooth asymptotically simple space-times are polyhomogeneous in a trivial way.

Generic hyperboloidal and characteristic initial data are known to be non-trivially polyhomogeneous.

Theorem (Hintz, Vasy, arXiv:1711.00195)

- General relativistic initial data which have an expansion in inverse powers of r lead to spacetimes with a polyhomogeneous Scri.
- This holds globally if the data are sufficiently near to Minkowski ones.

(New proof, alternative to those of Christodoulou & Klainerman or of Lindblad & Rodnianski, of stability of Minkowski spacetime; cf. also Keir arXiv:1808.09982.)
Black hole Stability, $\Lambda = 0$: (on the 25th anniversary of the Christodoulou-Klainerman theorem, almost there...)

Theorem (Klainerman, Szeftel arXiv:1711.075)

*Schwarzschild black holes are stable under a*xi-*symmetric polarised non-linear perturbations*
Black hole Stability, $\Lambda = 0$: (on the 25th anniversary of the Christodoulou-Klainerman theorem, almost there...)
Dafermos, Imperial College Colloquium, January 2018

Theorem (Klainerman, Szeftel arXiv:1711.075)

Schwarzschild black holes are stable under axi-symmetric polarised non-linear perturbations

Theorem (Dafermos, Holzegel, Rodnianski, Taylor; in preparation)

Schwarzschild black holes are stable under non-linear perturbations
Black hole Stability, $\Lambda = 0$: (on the 25th anniversary of the Christodoulou-Klainerman theorem, almost there...)

Dafermos, Imperial College Colloquium, January 2018

Theorem (Klainerman, Szeftel arXiv:1711.075)

Schwarzschild black holes are stable under axi-symmetric polarised non-linear perturbations

Theorem (Dafermos, Holzegel, Rodnianski, Taylor; in preparation)

Schwarzschild black holes are stable under non-linear perturbations

More precisely, the authors identify a subset of the set of initial data of finite co-dimension so that perturbations within this set evolve asymptotically to some Schwarzschild, while the remaining do not
Black hole Stability, $\Lambda = 0$: (on the 25th anniversary of the Christodoulou-Klainerman theorem, almost there...)
Dafermos, Imperial College Colloquium, January 2018

Schwarzschild black holes are stable under axi-symmetric polarised non-linear perturbations

Schwarzschild black holes are stable under non-linear perturbations

More precisely, the authors identify a subset of the set of initial data of finite co-dimension so that perturbations within this set evolve asymptotically to some Schwarzschild, while the remaining do not

Piotr T. Chruściel
Mathematics of gravitation
Black hole Stability, $\Lambda = 0$: (on the 25th anniversary of the Christodoulou-Klainerman theorem, almost there...)

Dafermos, Imperial College Colloquium, January 2018

Theorem (Klainerman, Szeftel arXiv:1711.075)

\textit{Schwarzschild black holes are stable under \textit{axi-symmetric polarised non-linear} perturbations}

Theorem (Dafermos, Holzegel, Rodnianski, Taylor; in preparation)

\textit{Schwarzschild black holes are stable under \textit{non-linear} perturbations}

More precisely, the authors identify a \textit{subset} of the set of initial data of \textit{finite co-dimension} so that perturbations within this set evolve asymptotically to \textit{some} Schwarzschild, while the remaining do not
Theorem (Friedrich 1986)

\textit{de Sitter is stable under non-linear perturbations}
Theorem (Friedrich 1986)

\emph{de Sitter is stable under non-linear perturbations}

Theorem (Hintz, Vasy 2017)

\emph{Kerr-de Sitter black holes are stable under non-linear perturbations in the region between horizons}
Theorem (Friedrich 1986)

de Sitter is stable under non-linear perturbations

Theorem (Hintz, Vasy 2017)

Kerr-de Sitter black holes are stable under non-linear perturbations in the region between horizons
Theorem (Friedrich 1986)

de Sitter is stable under non-linear perturbations

Theorem (Hintz, Vasy 2017)

Kerr-de Sitter black holes are stable under non-linear perturbations in the region between horizons

compare Schlue (work in progress) and Ringström, Oxford Univ. Press 2013
Theorem (Friedrich 1986)

de Sitter is stable under non-linear perturbations

Theorem (Hintz, Vasy 2017)

Kerr-de Sitter black holes are stable under non-linear perturbations in the region between horizons

compare Schlue (work in progress) and Ringström, Oxford Univ. Press 2013

Theorem (Hintz 2017)

Kerr-de Sitter black holes are the only stationary black holes near Kerr-de Sitter
Positive energy?
Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, $n \geq 3$, is non-negative, and vanishes only for Euclidean space.
Positive energy for asymptotically flat manifolds

Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, \(n \geq 3 \), is non-negative, and vanishes only for Euclidean space.

1. Known previously in dimensions \(n \leq 7 \) (Schoen & Yau 1981, 1989)
2. or assuming that the manifold admits a spin structure (Witten, 1981)
3. Lohkamp 2017: the energy-momentum vector is timelike future pointing
4. Huang, Lee 2018: and vanishes only for Minkowskian initial data
Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, $n \geq 3$, is non-negative, and vanishes only for Euclidean space.

1. Known previously in dimensions $n \leq 7$ (Schoen & Yau 1981, 1989)
2. or assuming that the manifold admits a spin structure (Witten, 1981)
3. Lohkamp 2017: the energy-momentum vector is timelike future pointing
4. Huang, Lee 2018: and vanishes only for Minkowskian initial data
Positive energy for asymptotically flat manifolds
space-dimension n

Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, $n \geq 3$, is non-negative, and vanishes only for Euclidean space.

1. Known previously in dimensions $n \leq 7$ (Schoen & Yau 1981, 1989)
2. or assuming that the manifold admits a spin structure (Witten, 1981)
3. Lohkamp 2017: the energy-momentum vector is timelike future pointing
4. Huang, Lee 2018: and vanishes only for Minkowskian initial data
Theorem (Lohkamp 2016; Schoen, Yau, 2017)

The ADM mass of n-dimensional asymptotically flat Riemannian manifolds, $n \geq 3$, is non-negative, and vanishes only for Euclidean space.

1. Known previously in dimensions $n \leq 7$ (Schoen & Yau 1981, 1989)
2. or assuming that the manifold admits a spin structure (Witten, 1981)
3. Lohkamp 2017: the energy-momentum vector is *timelike* future pointing
4. Huang, Lee 2018: and vanishes only for Minkowskian initial data
Mass, momentum, etc., arise as obstructions in gluing problems.
Mass, momentum, etc., arise as obstructions in gluing problems

$m \geq 0$ for AF metrics \implies existence (Schoen 1984, all dim)

for the Yamabe problem
Mass or energy? What is it good for anyway? some good news in the asymptotically flat case

1. Mass, momentum, etc., arise as obstructions in gluing problems.

2. $m \geq 0$ for AF metrics \implies existence ($Schoen$ 1984, all dim) and compactness ($Khuri, Marques, Schoen$ 2018, dim $n \leq 24$, sharp) for the Yamabe problem.
Mass, momentum, etc., arise as obstructions in gluing problems.

1. $m \geq 0$ for AF metrics \implies existence (*Schoen* 1984, all dim) and compactness (*Khuri, Marques, Schoen* 2018, dim $n \leq 24$, sharp) for the Yamabe problem.

2. $m \geq 0$ for AF metrics \implies suitably regular static black holes are Schwarzschild in all dimensions.

Some good news in the asymptotically flat case.
Mass or energy? What is it good for anyway? some good news in the asymptotically flat case

1. Mass, momentum, etc., arise as obstructions in gluing problems

2. \(m \geq 0 \) for AF metrics \(\implies \) existence (Schoen 1984, all dim) and compactness (Khuri, Marques, Schoen 2018, dim \(n \leq 24 \), sharp) for the Yamabe problem

3. \(m \geq 0 \) for AF metrics \(\implies \) suitably regular static black holes are Schwarzschild in all dimensions

4. Hollands and Wald (2016): variational identities involving total mass for AF metrics can be used to prove existence of instabilities in “black strings”
Asymptotically Anti-de Sitter metrics

Geometric formulae for total energy (Ashtekar Romano 1992; Herzlich 2015; PTC, Barzegar, Höerzinger 2017), space-dimension n

\[g \rightarrow_{r \rightarrow \infty} \bar{g} = - V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2, \quad V = r^2 + 1. \]

- For any Killing vector X of \bar{g} we have

\[H_b (X, \mathcal{L}) = \frac{1}{16(n - 2) \pi} \lim_{R \rightarrow \infty} \int_{t=0, r=R} X^\nu Z^\xi W^{\alpha\beta}_{\nu\xi} dS_{\alpha\beta}, \]

where $W^{\alpha\beta}_{\nu\xi}$ is the Weyl tensor of g and $Z = r \partial_r$ is the dilation vector field.
Asymptotically Anti-de Sitter metrics

Geometric formulae for total energy (Ashtekar Romano 1992; Herzlich 2015; PTC, Barzegar, Höerzinger 2017), space-dimension n

\[g \to_{r \to \infty} \bar{g} = -V^2 dt^2 + V^{-2} dr^2 + r^2 d\Omega^2, \quad V = r^2 + 1. \]

• For any Killing vector X of \bar{g} we have

\[H_b(X, \mathcal{L}) = \frac{1}{16(n-2)\pi} \lim_{R \to \infty} \int_{t=0, r=R} X^\nu Z^\xi W^{\alpha\beta}_{\nu\xi} dS_{\alpha\beta}, \]

where $W^{\alpha\beta}_{\nu\xi}$ is the Weyl tensor of g and $Z = r \partial_r$ is the dilation vector field

• Riemannian version, asymptotically hyperbolic Riemannian metrics g, R^i_j is the Ricci tensor of g:

\[H_b(X, \mathcal{L}) = -\frac{1}{16(n-2)\pi} \lim_{R \to \infty} \int_{r=R} X^0 V Z^j (R^i_j - \frac{R}{n} \delta^j_i) dS_i. \]
Theorem (PTC, Delay, arXiv:1901.05263)

The mass of n-dimensional asymptotically hyperbolic Riemannian manifolds, $n \geq 3$, is non-negative.
Theorem (PTC, Delay, arXiv:1901.05263)

The mass of \(n \)-dimensional asymptotically hyperbolic Riemannian manifolds, \(n \geq 3 \), is non-negative.

1. Known since 1981 for spin manifolds by Witten-type methods
2. Different story if conformal infinity is not spherical
3. Positivity does not guarantee dynamical stability (Bizon, Rostworowski 2011)
4. Huang, Jang, Martin 2019: vanishes only for hyperbolic space
5. Key previous partial results by Andersson, Cai & Galloway 2008
6. and the Maskit gluing by Isenberg, Lee & Stavrov 2010
Theorem (PTC, Delay, arXiv:1901.05263)

The mass of \(n \)-dimensional asymptotically hyperbolic Riemannian manifolds, \(n \geq 3 \), is non-negative.

1. Known since 1981 for spin manifolds by Witten-type methods
2. Different story if conformal infinity is not spherical
3. Positivity does not guarantee dynamical stability (Bizon, Rostworowski 2011)
4. Huang, Jang, Martin 2019: vanishes only for hyperbolic space
5. Key previous partial results by Andersson, Cai & Galloway 2008
6. and the Maskit gluing by Isenberg, Lee & Stavrov 2010
Positive energy for asymptotically hyperbolic manifolds
space-dimension \(n \)

Theorem (PTC, Delay, arXiv:1901.05263)

The mass of \(n \)-dimensional asymptotically hyperbolic Riemannian manifolds, \(n \geq 3 \), is non-negative.

1. Known since 1981 for spin manifolds by Witten-type methods
2. Different story if conformal infinity is not spherical
3. Positivity does not guarantee dynamical stability (Bizon, Rostworowski 2011)
4. Huang, Jang, Martin 2019: vanishes only for hyperbolic space
5. Key previous partial results by Andersson, Cai & Galloway 2008
6. and the Maskit gluing by Isenberg, Lee & Stavrov 2010
Positive energy for asymptotically hyperbolic manifolds
space-dimension n

Theorem (PTC, Delay, arXiv:1901.05263)

The mass of n-dimensional asymptotically hyperbolic Riemannian manifolds, $n \geq 3$, is non-negative.

1. Known since 1981 for spin manifolds by Witten-type methods
2. Different story if conformal infinity is not spherical
3. Positivity does not guarantee dynamical stability (Bizon, Rostworowski 2011)
4. Huang, Jang, Martin 2019: vanishes only for hyperbolic space
5. Key previous partial results by Andersson, Cai & Galloway 2008
6. and the Maskit gluing by Isenberg, Lee & Stavrov 2010
Positive energy for asymptotically hyperbolic manifolds

Theorem (PTC, Delay, arXiv:1901.05263)

The mass of n-dimensional asymptotically hyperbolic Riemannian manifolds, $n \geq 3$, is non-negative.

1. Known since 1981 for spin manifolds by Witten-type methods
2. Different story if conformal infinity is not spherical
3. Positivity does not guarantee dynamical stability (Bizon, Rostworowski 2011)
4. Huang, Jang, Martin 2019: vanishes only for hyperbolic space
5. Key previous partial results by Andersson, Cai & Galloway 2008
6. and the Maskit gluing by Isenberg, Lee & Stavrov 2010
Positive energy for asymptotically hyperbolic manifolds

The mass of n-dimensional asymptotically hyperbolic Riemannian manifolds, $n \geq 3$, is non-negative.

1. Known since 1981 for spin manifolds by Witten-type methods
2. Different story if conformal infinity is not spherical
3. Positivity does not guarantee dynamical stability (Bizon, Rostworowski 2011)
4. Huang, Jang, Martin 2019: vanishes only for hyperbolic space
5. Key previous partial results by Andersson, Cai & Galloway 2008
6. and the Maskit gluing by Isenberg, Lee & Stavrov 2010

Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be *localised* by a Carlotto-Schoen type hyperbolic gluing.
Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

1. If the energy-momentum vector were spacelike, one could use a Maskit gluing to make it timelike past pointing

2. But such metrics have already been excluded by Andersson, Cai & Galloway 2008 and by PTC, Galloway, Nguyen & Paetz 2018

Given two asymptotically hyperbolic vacuum initial data sets one can construct a new one by making a connected sum at the conformal boundary at infinity. The construction can be localised by a Carlotto-Schoen type hyperbolic gluing.

1. If the energy-momentum vector were spacelike, one could use a Maskit gluing to make it timelike past pointing

2. But such metrics have already been excluded by Andersson, Cai & Galloway 2008 and by PTC, Galloway, Nguyen & Paetz 2018
Positive energy for asymptotically hyperbolic manifolds

Energy-momentum vector and localised Maskit gluing

Piotr T. Chruściel Mathematics of gravitation
Positive energy for asymptotically hyperbolic manifolds
Energy-momentum vector and localised Maskit gluing
Positive energy for asymptotically hyperbolic manifolds

Energy-momentum vector and localised Maskit gluing
Positive energy for asymptotically hyperbolic manifolds
Energy-momentum vector and localised Maskit gluing

The mass aspect function of n-dimensional asymptotically hyperbolic Riemannian manifolds, $3 \leq n \leq 7$, cannot be negative.

The mass aspect function of n-dimensional asymptotically hyperbolic Riemannian manifolds, $3 \leq n \leq 7$, cannot be negative.

$$g = x^{-2} \left(dx^2 + \left(h_{AB}(y^C) + x^n \mu_{AB}(y^C) \right) dy^A dy^B + \text{lower order} \right),$$

where y^A are coordinates at the conformal boundary at infinity,
Positive energy for \textbf{asymptotically hyperbolic manifolds} space-dimension n

\textbf{Theorem (Andersson, Cai, Galloway 2008, PTC, Galloway, Nguyen, Paetz 2018)}

\textit{The mass aspect function} of n-dimensional asymptotically hyperbolic Riemannian manifolds, $3 \leq n \leq 7$, cannot be \textbf{negative}.

\[g = x^{-2} \left(dx^2 + \left(h_{AB}(y^C) + x^n \mu_{AB}(y^C) \right) dy^A dy^B + \text{lower order} \right), \]

where y^A are coordinates at the conformal boundary at infinity,

\[m = \int_{S^{n-1}} \mu \, d^{n-1}y, \]

where the \textbf{mass aspect function} is defined as

\[\mu = h^{AB} \mu_{AB}. \]

The mass aspect function of n-dimensional asymptotically hyperbolic Riemannian manifolds, $3 \leq n \leq 7$, cannot be negative.

1. Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \leq n \leq 7$
2. Different story if conformal infinity is not spherical
3. One can use the Lohkamp – Schoen-Yau theorem to remove the dimension assumption
4. This (equivalent) version uses another deformation argument for $n \geq 4$
5. (for $n = 3$ this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)

The mass aspect function of n-dimensional asymptotically hyperbolic Riemannian manifolds, $3 \leq n \leq 7$, cannot be negative.

1. Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \leq n \leq 7$
2. Different story if conformal infinity is not spherical
3. One can use the Lohkamp – Schoen-Yau theorem to remove the dimension assumption
4. This (equivalent) version uses another deformation argument for $n \geq 4$
5. (for $n = 3$ this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)

The mass aspect function of n-dimensional asymptotically hyperbolic Riemannian manifolds, $3 \leq n \leq 7$, cannot be negative.

1. Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \leq n \leq 7$
2. Different story if conformal infinity is not spherical
3. One can use the Lohkamp – Schoen-Yau theorem to remove the dimension assumption
4. This (equivalent) version uses another deformation argument for $n \geq 4$
5. (for $n = 3$ this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)
Positive energy for asymptotically hyperbolic manifolds
space-dimension n

The mass aspect function energy-momentum vector of n-dimensional asymptotically hyperbolic Riemannian manifolds, $3 \leq n \leq 7$, cannot be negative timelike past pointing.

1. Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \leq n \leq 7$
2. Different story if conformal infinity is not spherical
3. One can use the Lohkamp – Schoen-Yau theorem to remove the dimension assumption
4. This (equivalent) version uses another deformation argument for $n \geq 4$
5. (for $n = 3$ this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)

The mass aspect function energy-momentum vector of n-dimensional asymptotically hyperbolic Riemannian manifolds, $3 \leq n \leq 7$, cannot be negative timelike past pointing.

1. Uses a deformation argument independent of dimension, and a positivity theorem valid for $3 \leq n \leq 7$
2. Different story if conformal infinity is not spherical
3. One can use the Lohkamp – Schoen-Yau theorem to remove the dimension assumption
4. This (equivalent) version uses another deformation argument for $n \geq 4$
5. (for $n = 3$ this is immediate by Witten-type arguments, since all three dimensional manifolds are spin)