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Asymptotics: Gravitational radiation à la Penrose

Piotr T. Chruściel Mathematics of gravitation



Gravitational radiation à la Penrose

Definition (Penrose, 1962)
• Gravitational radiation can be defined by adding smoothly a
conformal boundary at infinity, called Scri, to the space-time.

• A space-time is called asymptotically simple if every
maximally extended null geodesic has an initial point and a final
point at the conformal boundary at infinity.

Key idea: the large-distance gravitational field is studied by
local analysis near the conformal boundary at infinity

Theorem (PTC, Delay, 2003)
There exists a large class of non-trivial vacuum asymptotically
simple space-times.

The proof relies heavily upon deep results of Friedrich, and of
Corvino and Schoen. This is a small data result.
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Gravitational radiation à la Penrose
What about generic initial data? Penrose uses smooth functions throughout

Definition

• A function is called polyhomogeneous at null infinity if it
admits an asymptotic expansion of the form

f (u, r , θ, ϕ) =
∑

i≥0 , j≤N(i)

fij(u, θ, ϕ) r−i lnj(r)

= f00(u, θ, ϕ) + . . . ,

for some sequence N(i), i(0) = 0. Think of u as t − r
• A metric is called polyhomogeneous at null infinity if the
metric functions

gµν − ηµν
where ηµν is the Minkowski metric, are polyhomogeneous and
tend to zero as r →∞
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What about generic initial data? Penrose uses smooth functions throughout

Definition

• A function is called polyhomogeneous at null infinity if it
admits an asymptotic expansion of the form

f (u, r , θ, ϕ) =
∑

i≥0 , j≤N(i)

fij(u, θ, ϕ) r−i lnj(r)

= f00(u, θ, ϕ) + . . . ,

for some sequence N(i), i(0) = 0. Think of u as t − r

• A metric is called polyhomogeneous at null infinity if the
metric functions

gµν − ηµν
where ηµν is the Minkowski metric, are polyhomogeneous and
tend to zero as r →∞
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Gravitational radiation à la Penrose
What about generic initial data? Penrose uses smooth functions throughout

Andersson,
PTC & Friedrich 1992 , McCallum, PTC & Singleton 1993, PTC & Paetz 2013

Equivalently, Penrose’s asymptotic conditions hold with
polyhomogeneous rather than smooth metric functions.

Smooth asymptotically simple space-times are
polyhomogeneous in a trivial way
Generic hyperboloidal and characteristic
initial data are known to be non-trivially polyhomogeneous

Theorem (Hintz, Vasy, arXiv:1711.00195)
• General relativistic initial data which have an expansion in
inverse powers of r lead to spacetimes with a
polyhomogeneous Scri.

• This holds globally if the data are sufficiently near to
Minkowski ones

(New proof, alternative to those of Christodoulou & Klainerman or of Lindblad & Rodnianski, of stability of Minkowski

spacetime; cf. also Keir arXiv:1808.09982.)
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Black hole Stability
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Black hole Stability, Λ = 0: (on the 25th anniversary of
the Christodoulou-Klainerman theorem, almost
there...)

Dafermos, Imperial College Colloquium, January 2018

Theorem (Klainerman, Szeftel arXiv:1711.075)
Schwarzschild black holes are stable under axi-symmetric
polarised non-linear perturbations

Theorem (Dafermos, Holzegel, Rodnianski, Taylor; in
preparation)
Schwarzschild black holes are stable under non-linear
perturbations

More precisely, the authors identify a subset of the set of initial
data of finite co-dimension so that perturbations within this set
evolve asymptotically to some Schwarzschild, while the
remaining do not
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Λ > 0: Stability (32 years of Friedrich’s theorem ...)

Theorem (Friedrich 1986)
de Sitter is stable under non-linear perturbations

compare Schlue (work in progress) and Ringström, Oxford Univ.
Press 2013

Theorem (Hintz 2017)

Kerr-de Sitter black holes are the only stationary black holes near
Kerr-de Sitter
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Positive energy?
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Positive energy for asymptotically flat manifolds
space-dimension n

Theorem (Lohkamp 2016; Schoen, Yau, 2017)
The ADM mass of n-dimensional asymptotically flat
Riemannian manifolds, n ≥ 3, is non-negative,
and vanishes only for Euclidean space.

1 Known previously in dimensions n ≤ 7 (Schoen & Yau
1981, 1989)

2 or assuming that the manifold admits a spin structure
(Witten, 1981)

3 Lohkamp 2017: the energy-momentum vector is timelike
future pointing

4 Huang, Lee 2018: and vanishes only for Minkowskian
initial data
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Mass or energy?
What is it good for anyway? some good news

in the asymptotically flat case

1 Mass, momentum, etc., arise as obstructions in gluing
problems

2 m ≥ 0 for AF metrics =⇒ existence (Schoen 1984, all dim)

and compactness (Khuri, Marques, Schoen 2018, dim
n ≤ 24, sharp)

for the Yamabe problem
3 m ≥ 0 for AF metrics =⇒ suitably regular static black holes

are Schwarzschild in all dimensions
4 Hollands and Wald (2016): variational identities involving

total mass for AF metrics can be used to prove existence
of instabilities in “black strings”
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are Schwarzschild in all dimensions

4 Hollands and Wald (2016): variational identities involving
total mass for AF metrics can be used to prove existence
of instabilities in “black strings”
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Asymptotically Anti-de Sitter metrics
Geometric formulae for total energy (Ashtekar Romano 1992; Herzlich 2015; PTC,
Barzegar, Höerzinger 2017), space-dimension n

g→r→∞ g = −V 2dt2 + V−2dr2 + r2dΩ2 , V = r2 + 1 .

• For any Killing vector X of g we have

Hb (X ,S ) =
1

16(n − 2)π
lim

R→∞

∫
t=0,r=R

X νZ ξWαβ
νξdSαβ ,

where Wαβ
νξ is the Weyl tensor of g and Z = r∂r is the dilation

vector field

• Riemannian version, asymptotically hyperbolic Riemannian
metrics g, Ri

j is the Ricci tensor of g:

Hb (X ,S ) = − 1
16(n − 2)π

lim
R→∞

∫
r=R

X 0V Z j(Ri
j −

R
n
δi

j )dSi .
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Positive energy for asymptotically hyperbolic manifolds
space-dimension n

Theorem (PTC, Delay, arXiv:1901.05263)
The mass of n-dimensional asymptotically hyperbolic
Riemannian manifolds, n ≥ 3, is non-negative.

1 Known since 1981 for spin manifolds by Witten-type
methods

2 Different story if conformal infinity is not spherical
3 Positivity does not guarantee dynamical stability (Bizon,

Rostworowski 2011)
4 Huang, Jang, Martin 2019: vanishes only for hyperbolic

space
5 Key previous partial results by Andersson, Cai & Galloway

2008
6 and the Maskit gluing by Isenberg, Lee & Stavrov 2010
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Positive energy for asymptotically hyperbolic manifolds
Maskit gluing

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay,
arXiv:1511.07858)
Given two asymptotically hyperbolic vacuum initial data sets
one can construct a new one by making a connected sum at
the conformal boundary at infinity. The construction can be
localised by a Carlotto-Schoen type hyperbolic gluing.
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Positive energy for asymptotically hyperbolic manifolds
Maskit gluing

Theorem (Isenberg, Lee & Stavrov 2010, PTC, Delay,
arXiv:1511.07858)
Given two asymptotically hyperbolic vacuum initial data sets
one can construct a new one by making a connected sum at
the conformal boundary at infinity. The construction can be
localised by a Carlotto-Schoen type hyperbolic gluing.

1 If the energy-momentum vector were spacelike, one could
use a Maskit gluing to make it timelike past pointing

2 But such metrics have already been excluded by
Andersson, Cai & Galloway 2008 and by PTC, Galloway,
Nguyen & Paetz 2018
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Positive energy for asymptotically hyperbolic manifolds
Energy-momentum vector and localised Maskit gluing

glue−→

boost−→

boost−→ glue−→
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Positive energy for asymptotically hyperbolic manifolds
space-dimension n

Theorem (Andersson, Cai, Galloway 2008, PTC, Galloway,
Nguyen, Paetz 2018)
The mass aspect function

energy-momentum vector

of
n-dimensional asymptotically hyperbolic Riemannian manifolds,
3 ≤ n ≤ 7, cannot be negative.

1 Uses a deformation argument independent of dimension,
and a positivity theorem valid for 3 ≤ n ≤ 7

2 Different story if conformal infinity is not spherical
3 One can use the Lohkamp – Schoen-Yau theorem to

remove the dimension assumption
4 This (equivalent) version uses another deformation

argument for n ≥ 4
5 (for n = 3 this is immediate by Witten-type arguments,

since all three dimensional manifolds are spin)
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Nguyen, Paetz 2018)

The ///////mass /////////aspect ///////////function energy-momentum vector of
n-dimensional asymptotically hyperbolic Riemannian manifolds,
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and a positivity theorem valid for 3 ≤ n ≤ 7
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