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Motivation

An important unsolved problem in theoretical physics is how to combine the theories
of general relativity (GR) and quantum mechanics. One of the issues of such a
unification is that GR is a perturbatively non-renormalizable theory. One way to
address this is to go beyond perturbation theory. Approaches such as CDT use a
lattice regularization to achieve this. This implies that the continuous differentiable
manifold of GR is replaced by a piecewise flat triangulation. We now have to
redefine the classical observable, introducing a new set of observables suitable for
this framework. This poster discusses such an observable, the recently introduced
notion of quantum Ricci curvature [1, 2].

Curvature continuum definition

The following definition of curvature is used as an inspiration for our curvature
construction. Consider a point x on a D-dimensional Riemannian manifold and a
vector v at x. Move a distance δ along the geodesic in direction v to the point y.
Consider spheres of radius ε around x and y. The points in the sphere around x can
be defined through the initial vector w. Calculate the average distance d(Sεx, Sεy)
between pairs of points related by parallel transport of w along v to w′. The Ricci
curvature two-form along v, Ric(v, v), is related to d by the equation [3]

d(Sεx, Sεy) = δ

(
1−

ε2

2D
Ric(v, v) + O(δε2 + ε3)

)
. (1)

Quantum Ricci curvature

The definition of the previous section relies on parallel transport. The curvature
singularities of simplicial geometries make it difficult to implement parallel transport
beyond a small neighborhood. We therefore consider a slight variation with an easier
implementation. We define the average transport distance d̄ as the distance between
all pairs of points in Sx and Sy. We replace the distance of the previous section with
the average transport distance. The averaging procedure implies that orders linear in
δ and ε will appear. In order to have a consistent expansion it is therefore necessary
to assume a relation between δ and ε. We use ε = δ and define

d̄(δ)

δ
= (cq(1− Kq(x, y)) , (2)

where cq is a positive constant and Kq(x, y) is the quantum Ricci curvature. We
implemented this formalism beyond the infinitesimal regime for three
constant-curvature model spaces, flat space, the sphere and hyperbolic space. We
see that flat space follows a straight line, with the sphere below this line and
hyperbolic space above it. A qualitative determination of the sign of the curvature is
therefore possible. Positive curvature leads to decreasing values and negative
curvature to increasing values.

Figure : Plot of d̄
δ

as a function of δ for the three model spaces, hyperbolic space in blue, sphere in yellow and flat space in
green.

Criteria for quantum gravity observables

I Well defined under averaging

I Finite

I Going beyond global properties

I Scalable (Allows for a well-defined continuum limit)

I Continuum interpretation

Euclidean Dynamical Triangulations (EDT) results

We tested the construction of average transport curvature by implementing it in 2-d
EDT with spherical topology. 2-d EDT is a two-dimensional toy model of quantum
gravity. Earlier measurements of the Hausdorff dimension found dH = 4 implying
that this space is very far from a classical geometry. [4] Plotting d̄

δ
we find that the

values are decreasing, which indicates that the quantum Ricci curvature is positive.
This makes it natural to fit these measurements to continuum expectations of a
sphere. Disregarding small values of δ that are dominated by discretization effects,
we find that the data is quite close to this classical fit. The fit has a free parameter
corresponding to the radius of the sphere. We can therefore determine an effective
radius of curvature ρ based on the fits.

Figure : Plot of the value of d̄
δ

as a function of δ for EDT triangulations with N = 40K fitted to a 5-sphere with ρ = 16.7.

We measured ρ as a function of the total system size. From classical geometry we
would expect a power series ρ ∝ N1/D, with D the dimension of the space. We do
find such dependence with D = 4.85(16). This is consistent with the fits to a
5-sphere and shows that our results can be successfully extrapolated to infinite
system size.

Conclusion

We introduced the notion of quantum Ricci curvature. This definition of Ricci
curvature extends to the regularizations found in models of quantum gravity such as
Causal Dynamical Triangulations (CDT). The definition uses the normalized average

distance d̄
δ

between spheres. Decreasing values indicate positive curvature and
increasing values indicate negative curvature. We extended the definition beyond the
infinitesimal regime by comparing to constant-curvature model spaces. This allowed
us to determine the value of curvature at finite values of δ.
We measured the average transport curvature for 2-d EDT, finding that its Ricci
could be modeled by a 5-sphere. It is known that the geometries of 2-d EDT are
fractal and dominated by highly non-classical configurations. The ability to make
consistent predictions for these configurations indicates the robustness of the
curvature definition.
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