

Parametric instability predictions for Advanced Virgo

Annalisa Allocca^{1,2}, Gilles Bogaert^{3,4}, David Cohen^{4,5,6}, <u>Thibaut Jacqmin^{4,7}</u>, Paola Puppo⁸

¹Universita di Pisa, Pisa, Italy; ²INFN, Sezione di Pisa, Pisa, Italy; ³Artemis, Université Côte d'Azur, Nice, France; ⁵LAL, Univ. Paris-Sud, Université Paris-Saclay, Orsay; ; ⁶IN2P3, France; ⁷Laboratoire Kastler Brossel, Sorbonne Université, ENS-Université, PSL, Collège de France, Paris, France; ⁸INFN, Sezione di Roma, Roma, Italy

- Gouy phase of PR cavity : 1.8 mrad

Parametric gain simulation methods

- Finesse (frequency domain interferometer software)
- Two photons formalism

Parametric gain

Spatial overlap integral between the 3 modes

Thermal effects

Gaussian beam incident on input mirror with waist 2 cm

Temperature profile within coating layers

Temperature profile within mirror bulk (glass)

Example of predictions

Circulating power : 100 kW

The mirror surface heating due to light absorption leads to a mirror surface deformation, and refractive index change.

Mechanical mode FEM simulation FEM with ANSYS

• Material properties are extracted from fits to measured frequencies Young Modulus: 72.248 GPa Poisson ratio: 0.16629 Density: 2201 kg/m³ • Compute mechanical Q, frequencies and modal maps

Conclusions Pi GUI to help monitoring PIs

Not many Pis expected for O3 at 100 kW

- **Mitigation** strategies :
- End mirror RoC varying with ring heaters
- Passive dampers
- Active damping via radiation pressure

https://github.com/ThibautJacqmin/ParametricInstability