A method for directed searches of continuous gravitational waves in advanced detector data

Ornella Juliana Piccinni for the Rome CW group

University of Rome "La Sapienza" & INFN Roma1

February 20, 2019

February 20, 2019 0 / 17

ELE NOR

Overview

- What is a continuous gravitational wave (CW)?
- CWs searches and the computational problem
- highlights of a directed search pipeline
- Potential sources of CWs signals form Fermi and INTEGRAL
- Can we detect something in O3?

What is a Continuous Wave (CW)?

Credit: C. Reed, Penn State/Mc Gill University

- Long-lived signals emitted by fast spinning (asymmetric) compact objects
- Expected sources in LIGO-Virgo band involve isolated neutron stars (NS) or in a binary system
- Orders of magnitude weaker than transient events from black hole and neutron star mergers

[For a CW review: Lasky 2015]

The signal

In the general case of an isolated spinning NS, non-axisymmetric with respect to the rotational axis. The GW-strain amplitude is given by:

$$h_0 = \frac{4\pi^2 G}{c^4} \frac{I_{zz} f^2}{r} \epsilon, \quad I_{zz} : \text{moment of inertia} \quad \epsilon : \text{ellipticity} \quad (1)$$

- The emitted frequency is proportional to the star rotational frequency and depends on the emission scenario
- ▶ The ellipticity can be due to different mechanisms: elastic stress, strong internal magnetic fields, thermal gradients, etc. (theoretical max: $\epsilon_{max} \sim 10^{-5} 10^{-3}$), depending on the EOS

[For a CW review: Lasky 2015]

The signal modulations

a CW received at the detector is not exactly monochromatic (there is a frequency and amplitude modulation)

there is a spin-down due to the loss of energy of the star

$$f_0(t) = f_0 + \dot{f}_0(t - t_0) + \frac{\ddot{f}_0}{2}(t - t_0)^2 + \dots$$
 (2)

The signal modulations

a CW received at the detector is not exactly monochromatic (there is a frequency and amplitude modulation)

there is a spin-down due to the loss of energy of the star

$$f_0(t) = f_0 + \dot{f}_0(t - t_0) + \frac{\ddot{f}_0}{2}(t - t_0)^2 + \dots$$
 (2)

due to the orbital and rotational motion of the Earth, there is a detector **Doppler shift**, dependent on the sky direction of the source.

$$f(t) = \frac{1}{2\pi} \frac{d\Phi(t)}{dt} = f_0(t) \left(1 + \frac{\vec{v} \cdot \hat{n}}{c}\right), \quad \vec{v} = \vec{v}_{orb} + \vec{v}_{rot} \quad (3)$$

▲周▶ ▲目▶ ▲目▶ 目目 のなの

The signal modulations

a CW received at the detector is not exactly monochromatic (there is a frequency and amplitude modulation)

there is a spin-down due to the loss of energy of the star

$$f_0(t) = f_0 + \dot{f}_0(t - t_0) + \frac{\ddot{f}_0}{2}(t - t_0)^2 + \dots$$
 (2)

due to the orbital and rotational motion of the Earth, there is a detector **Doppler shift**, dependent on the sky direction of the source.

$$f(t) = \frac{1}{2\pi} \frac{d\Phi(t)}{dt} = f_0(t) \left(1 + \frac{\vec{v} \cdot \hat{n}}{c}\right), \quad \vec{v} = \vec{v}_{orb} + \vec{v}_{rot}$$
(3)

Furthermore there is a sidereal day variation of the phase and amplitude of the detected signal

February 20, 2019 4 / 17

Correction of the signal

For a source with known rotational parameters $[f_0, \dot{f}_0, \ddot{f}_0, \ldots]$ at a given reference time:

• The **Doppler shift** can be corrected by simply multiplying the data by $\exp(-i\phi_{dc}(t))$ where:

$$\phi_{dc}(t) = 2\pi p_{\hat{n}}(t) f_0(t)$$
(4)

 $p_{\hat{n}}(t)$ position of the detector projected along the source sky position \hat{n}

While the spin-down phase correction is :

$$\phi_{sd}(t) = 2\pi \int \dot{f}_0 \cdot (t - t_0) + \dots dt$$
(5)

other effects like the Einstein delay and the Shapiro delay should be considered if needed

February 20, 2019 5 / 17

- explore a 4 + N dimensional space $(\alpha, \delta, f, f + \text{derivatives})$
- Long integration time is needed in order to increase the Signal-to-Noise Ratio

EN ELE NOR

- explore a 4 + N dimensional space $(\alpha, \delta, f, f + \text{derivatives})$
- Long integration time is needed in order to increase the Signal-to-Noise Ratio

3 N 2 1 2 N 0 0

- explore a 4 + N dimensional space $(\alpha, \delta, f, f + \text{derivatives})$
- Long integration time is needed in order to increase the Signal-to-Noise Ratio

3 N 2 1 2 N 0 0

6 / 17

February 20, 2019

- explore a 4 + N dimensional space $(\alpha, \delta, f, f + \text{derivatives})$
- Long integration time is needed in order to increase the Signal-to-Noise Ratio

3 N 2 1 2 N 0 0

- explore a 4 + N dimensional space $(\alpha, \delta, f, f + \text{derivatives})$
- Long integration time is needed in order to increase the Signal-to-Noise Ratio

ELE SOC

∃ →

- explore a 4 + N dimensional space $(\alpha, \delta, f, f + \text{derivatives})$
- Long integration time is needed in order to increase the Signal-to-Noise Ratio

ELE SQC

∃ →

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Potential sources

- Sources which are likely hosting a NS are interesting candidates for our searches.
- Several potential sources are present in the astronomical catalogs like:
 - ▶ the pre-release of the 8-years Fermi-LAT point sources catalog¹
 - ► the IBIS-INTEGRAL soft gamma-ray source catalog (Bird+ 2016).
- most of the sources lie on the Galactic plane
- in addition to these targets the Galactic center itself is a good place to look for CW since it is likely to host several candidates (Bartels+ 2016, Lee+ 2016, Fermi-LAT coll. 2017)

¹https://fermi.gsfc.nasa.gov/ssc/data/access/lat/f18y/ (=> ≡|= ∽a.

IBIS-INTEGRAL

INTEGRAL catalog presents the following interesting sources: 10 **SNR**, 19 *pulsar-like* sources and 216 *unidentified* ones (23%) which sky distribution is shown below:

-

Fermi-LAT (1)

The Fermi catalog potential CW sources are:

Identified: Source # Frequency position CW search Pulsar (PSR) 184 well known well known targeted Pulsar Wind Nebula (PWN) 8 not known known directed Supernova remnant (SNR) 22 not known known directed

Associated: no pulsations seen yet

Source	#	Frequency	position	CW search
Pulsar (psr)	34	not well known	known	Narrow-band
Pulsar Wind Nebula (pwn)	11	not known	not well known	semi-directed
Supernova remnant (snr)	17	not known	not well known	semi-directed
Potential pwn or snr (spp)	96	not known	not well known	semi-directed

EL OQO

(B)

Fermi-LAT (2)

Unassociated: 2132 in Fermi-LAT ($\sim 39\%$) we have only gamma-rays observation, no counterparts at other wavelengths

(日本)

How "good" is a target

- ▶ for a given pipeline we can have an estimate of the search sensitivity (Astone+ 2014) which is given by $h_{0_{min}} \approx \frac{\sqrt{S_n(f)}}{\alpha}$ (minimum detectable GW strain amplitude, α depends on the coherence time and peaks/candidates thresholds used)
- typically for targeted searches we can compute the indirect spin-down limit using the frequency and the spin-down parameters of a source
- for directed searches we use the age based upper limit hage for those sources whose age and distance is known (Wette 2008)
- a good target will have $h_{age} \ge h_{0_{min}}$
- ▶ all these quantities can be translated in terms of the star ellipticity ϵ_{age} and ϵ_{min} (see Eq. (1))

Theoretical indirect upper limits

The sources shown in the plot are potentially detectable by our directed search pipeline since they have a theoretical indirect age based limit (among them Cas A) bigger than our search sensitivity. Other sources from the catalog were discarded because the age or the distance was unknown.

Theoretical indirect upper limits on the ellipticity

Since
$$h_0 \propto \frac{I_{zz}}{d} \epsilon f^2 \rightarrow \epsilon_{min} = \frac{c^4}{4\pi^2 G} \left(\frac{d}{I_{zz}}\right) \frac{h_{0_{min}}}{f^2}$$

Curve of ϵ_{min} at 95 % C.L. for the case of LIGO and Virgo detectors with d = 1 kpc and 20 kpc and the 8 SNR ellipticity indirect upper limits ϵ_{age} . The theoretical indirect upper limit for the star ellipticity is

$$\epsilon_{age} \le \sqrt{\frac{5c^5}{128\pi^4 G I_{zz} \tau f^4}}$$

Conclusion

- CW could be the next surprise for GW astronomy given the enhanced sensitivity of the detectors
- In parallel, new fast and computationally robust pipelines are needed to increase the chance of detection
- Astronomical catalogs (Fermi, INTEGRAL,...) provide good targets for our directed pipelines if they beat the indirect limit
- It's a good practice to keep track also of those sources which couldn't beat the limit and include them as target in future searches

▲□ ▲ □ ▲ □ ▲ □ ▲ □ ■ □

References

- [1] P. Lasky Pubs. Astron. Soc. Australia 32 34 (2015)
- [2] Piccinni O. J. et al. CQG 36 015008 (2019)
- [3] https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/
- [4] A. J. Bird et al. Astro. J. Supp. S., 223 1 (2016)
- [5] Astone P. et al. PRD 90, 042002 (2014)
- [6] Wette, K. CQG, 25, 235011 (2008)
- [7] Abbott P.B. et al. Liv. Rev. in Rel., 21 3 (2018)
- [8] Bartels, R. et al. C. Phys. Rev. Lett. 116, 051102 (2016)

References

[9] Lee, S. K. et al. Phys. Rev. Lett. 116, 051103 (2016)
[10] Fermi-LAT collaboration 2017 arXiv:1705.00009
[11] P. Astone et al. Class. Quant. Grav. 22,S1197 (2005)

(日) (周) (日) (日) (日) (日) (000)

The sensitivity of the search

$$h_{0,min} \propto \frac{\Lambda_1}{N(f)^{1/4}} \sqrt{\frac{S_n(f)}{T_{coh}(f)}}$$

$$h_{0,min} \approx \frac{4.02}{N(f)^{1/4} \theta_{thr}^{1/2}} \sqrt{\frac{S_n(f)}{T_{coh}(f)} \left(\frac{p_0(1-p_0)}{p_1^2}\right)^{1/4}} \sqrt{CR_{thr}(f) - \sqrt{2} \text{erfc}^{-1}(2\Gamma)}$$

$$\begin{split} &\Gamma = 95\% C.L., \ \theta_{thr} = 2.5, \ p_0 = 0.0755, \ p_1 = 0.0692, \ \text{p0 prob of} \\ &\text{selecting a noise peak} \\ &CR_{thr} = \sqrt{2} \text{erfc}^{-1}(2*N_{cand}/N_{tot}) = 6.50 \\ &P_{fa} = \frac{1}{N_{tot}} = \frac{1}{\sum n_{if}n_{isd}} = 3.98e - 11 \ \text{if} \ N_{cand} = 1 \end{split}$$

$$h_0 = \frac{4\pi^2 G}{c^4} \frac{I_{zz} f^2}{r} \epsilon \tag{6}$$

February 20, 2019 2 / 5

◆□>
◆□>
● =
● =
●

The theoretical spin-down limit

- A spinning star loses energy (spin-down)
 - Rotational energy loss: $\dot{E}_{rot} \propto I_{zz} f_{rot} \dot{f}_{rot}$
 - Gravitational energy loss: $\dot{E}_{GW} \propto I_{zz}^2 f_{rot}^6 \epsilon^2$
- We can assume that all the loss of energy of a rotating NS is caused by GW emission. In other words we assume that the observed star spin-down (the decrease of the rotation period) is due to GWs:

$$\dot{E}_{rot} = \dot{E}_{GW} \Longrightarrow \epsilon_{sd} \propto \sqrt{\frac{1}{I_{zz}} \frac{|\dot{f}_{rot}|}{f_{rot}^5}} \tag{7}$$

From h_0 we can express a theoretical upper limit for the GW amplitude:

$$h_{sd} \propto \frac{1}{r} \sqrt{I_{zz} \frac{|\dot{f}_{rot}|}{f_{rot}}} \tag{8}$$

February 20, 2019 3 / 5

The age based limit

If we assume that the star is spinning down with $\dot{f} \propto f^n$ and it is spinning significantly more slowly than it was at birth, we can relate the frequency evolution to the characteristic age τ and braking index n:

$$\tau = \frac{1}{n-1} \left(\frac{f}{-\dot{f}} \right)$$
$$n = \frac{f\ddot{f}}{\dot{f}^2}$$

If the spin-down is dominated by GW from a constant mass quadrupole, then n = 5 and τ is the true age of the star and the spindown limit becomes:

$$h_{age} \leqslant \frac{1}{d} \sqrt{\frac{5GI_{zz}}{8c^3\tau}}$$

◇□◇ □□ ◇□ ◇ □ ◇ ○○

The Band-Sampled-Data framework

- What has been done: development of routines to create and manage band-limited time series (BSD), down-sampled and partially cleaned from disturbances
- Which data: time series is under the form of reduced-analytic signal
- A DB of DBs: each BSD file covers 1 month of data and 10 Hz frequency band + routines to switch to a different configuration
- Flexibility: optimized FFT length for a given search or step of the analysis (e.g. targeted, follow-up)

The Multi-Doppler correction

classical heterodyne

$$\phi_d(t) = \frac{2\pi}{c} \cdot p_{\hat{n}}(t) \cdot f_0(t)$$

- divide et impera: the 10 Hz BSD band is divided in sub-bands
- modified heterodyne (f₀(t) unknown)

$$\phi_i(t) = \frac{2\pi}{c} \cdot p_{\hat{n}}(t) \cdot f_i$$

corrected time series

$$y_{MD} = \sum_{i=1}^{10} y'_i(t) = \sum_{i=1}^{10} y_i(t) \cdot e^{-i\phi_i}$$

The peak selection

a peak is selected when the following relation holds:

$$\mathcal{R}(i,j) = \frac{S_{P;i}(f_j)}{S_{AR;i}(f_j)} > \theta_{thr} = 2.5$$
(9)

where $S_{P;i}(f_j)$ is the square modulus of the i-th FFT, also known as periodogram, and $S_{AR;i}(f_j)$ an auto-regressive average spectrum estimation. The ratio is computed for each j-th frequency bin of a given FFT. Each pair (i, j) made by the i-th initial time of a selected FFT and the corresponding j-th frequency bin is a peak.

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ 三回 ののの