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A method for directed searches of continuous gravitational waves in advanced detector data

Overview

I What is a continuous gravitational wave (CW)?

I CWs searches and the computational problem

I highlights of a directed search pipeline

I Potential sources of CWs signals form Fermi and INTEGRAL

I Can we detect something in O3?
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What is a Continuous Wave (CW)?

Credit: C. Reed, Penn State/Mc Gill University

I Long-lived signals emitted by fast spinning (asymmetric)
compact objects

I Expected sources in LIGO-Virgo band involve isolated neutron
stars (NS) or in a binary system

I Orders of magnitude weaker than transient events from black
hole and neutron star mergers

[For a CW review: Lasky 2015]
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The signal

In the general case of an isolated spinning NS, non-axisymmetric
with respect to the rotational axis. The GW-strain amplitude is
given by:

h0 =
4π2G

c4
Izzf

2

r
ε, Izz : moment of inertia ε : ellipticity (1)

I The emitted frequency is proportional to the star rotational
frequency and depends on the emission scenario

I The ellipticity can be due to different mechanisms: elastic
stress, strong internal magnetic fields, thermal gradients, etc.
(theoretical max: εmax ∼ 10−5 − 10−3), depending on the
EOS

[For a CW review: Lasky 2015]
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The signal modulations

a CW received at the detector is not exactly monochromatic (there
is a frequency and amplitude modulation)

I there is a spin-down due to the loss of energy of the star

f0(t) = f0 + ḟ0(t− t0) +
f̈0
2

(t− t0)2 + . . . (2)

I due to the orbital and rotational motion of the Earth, there is
a detector Doppler shift, dependent on the sky direction of
the source.

f(t) =
1

2π

dΦ(t)

dt
= f0(t)

(
1 +

~v · n̂
c

)
, ~v = ~vorb + ~vrot (3)

I Furthermore there is a sidereal day variation of the phase
and amplitude of the detected signal
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Correction of the signal

For a source with known rotational parameters [f0, ḟ0, f̈0, . . .] at a
given reference time:

I The Doppler shift can be corrected by simply multiplying the
data by exp(−iφdc(t)) where:

φdc(t) = 2πpn̂(t)f0(t) (4)

pn̂(t) position of the detector projected along the source sky
position n̂

I While the spin-down phase correction is :

φsd(t) = 2π

∫
ḟ0 · (t− t0) + . . . dt (5)

I other effects like the Einstein delay and the Shapiro delay
should be considered if needed
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CW searches

I explore a 4 +N dimensional space (α, δ, f, ḟ + derivatives)
I Long integration time is needed in order to increase the

Signal-to-Noise Ratio
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Targeted O1:
LVC Astrophys. J. 839 12 (2017) 19
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CW searches

I explore a 4 +N dimensional space (α, δ, f, ḟ + derivatives)
I Long integration time is needed in order to increase the

Signal-to-Noise Ratio
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Narrow-band O1:
LVC Phys. Rev. D 96, 122006 (2017)
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CW searches

I explore a 4 +N dimensional space (α, δ, f, ḟ + derivatives)
I Long integration time is needed in order to increase the

Signal-to-Noise Ratio
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Directed O1:
LVC arXiv:1812.11656

15 SNR + Fomalhaut b
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CW searches

I explore a 4 +N dimensional space (α, δ, f, ḟ + derivatives)
I Long integration time is needed in order to increase the

Signal-to-Noise Ratio
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Previous directed targets (LIGO S6):young SN remnants,
the Orion Spur, Cas A, NGC 6544, LMXBs Scorpius X-1

and XTE J1751-305, the Galactic center
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CW searches

I explore a 4 +N dimensional space (α, δ, f, ḟ + derivatives)
I Long integration time is needed in order to increase the

Signal-to-Noise Ratio
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All-sky O1:
LVC Phys. Rev. D 97, 102003 (2018)

Dergachev, Papa arXiv:1902.05530



A method for directed searches of continuous gravitational waves in advanced detector data

The BSD-directed pipeline
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1. The starting point is the
Band-Sampled-Data (BSD)

framework (Piccinni+ 2019 )
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The BSD-directed pipeline
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2. Since (f0, ḟ0) are unknown we
partially correct the data for the

Doppler in each 1 Hz band
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The BSD-directed pipeline
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3. Peakmap: The most significant
time-frequency peaks selected in the
equalized spectrum (Astone+ 2005)
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The BSD-directed pipeline
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4. FrequencyHough transform maps
the time frequency peaks to the
source intrinsic frequency and

spin-down (Astone+ 2014)
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The BSD-directed pipeline
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The most significant candidates are
selected on the final HM. The total
computational power needed for this

search is ∼ 100 CPU hours per target
for a ”wide” frequency/spin-down

range
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Potential sources

I Sources which are likely hosting a NS are interesting
candidates for our searches.

I Several potential sources are present in the astronomical
catalogs like:

I the pre-release of the 8-years Fermi-LAT point sources catalog1

I the IBIS-INTEGRAL soft gamma-ray source catalog (Bird+
2016).

I most of the sources lie on the Galactic plane

I in addition to these targets the Galactic center itself is a good
place to look for CW since it is likely to host several
candidates (Bartels+ 2016, Lee+ 2016, Fermi-LAT coll. 2017)

1https://fermi.gsfc.nasa.gov/ssc/data/access/lat/fl8y/
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IBIS-INTEGRAL

INTEGRAL catalog presents the following interesting sources: 10
SNR, 19 pulsar-like sources and 216 unidentified ones (23%)
which sky distribution is shown below:
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Fermi-LAT (1)

The Fermi catalog potential CW sources are:

Identified:
Source # Frequency position CW search

Pulsar (PSR) 184 well known well known targeted
Pulsar Wind Nebula (PWN) 8 not known known directed
Supernova remnant (SNR) 22 not known known directed

Associated: no pulsations seen yet
Source # Frequency position CW search
Pulsar (psr) 34 not well known known Narrow-band
Pulsar Wind Nebula (pwn) 11 not known not well known semi-directed
Supernova remnant (snr) 17 not known not well known semi-directed
Potential pwn or snr (spp) 96 not known not well known semi-directed
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Fermi-LAT (2)

Unassociated: 2132 in Fermi-LAT (∼ 39%) we have only
gamma-rays observation, no counterparts at other wavelengths
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How ”good” is a target

I for a given pipeline we can have an estimate of the search

sensitivity (Astone+ 2014) which is given by h0min ≈
√
Sn(f)

α
(minimum detectable GW strain amplitude, α depends on the
coherence time and peaks/candidates thresholds used)

I typically for targeted searches we can compute the indirect
spin-down limit using the frequency and the spin-down
parameters of a source

I for directed searches we use the age based upper limit hage for
those sources whose age and distance is known (Wette 2008)

I a good target will have hage > h0min
I all these quantities can be translated in terms of the star

ellipticity εage and εmin (see Eq. (1))
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Theoretical indirect upper limits

The sources shown in the plot are potentially detectable by our directed search
pipeline since they have a theoretical indirect age based limit (among them Cas
A) bigger than our search sensitivity. Other sources from the catalog were
discarded because the age or the distance was unknown.
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hage 6 1
d

√
5GIzz
8c3τ

h0min ≈
√
Sn(f)

α
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Theoretical indirect upper limits on the ellipticity

Since h0 ∝ Izz
d εf

2 → εmin = c4

4π2G

(
d
Izz

)
h0min
f2

Curve of εmin at 95 % C.L. for the
case of LIGO and Virgo detectors
with d = 1 kpc and 20 kpc and the
8 SNR ellipticity indirect upper
limits εage. The theoretical indirect
upper limit for the star ellipticity is

εage ≤
√

5c5

128π4GIzzτf4
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Conclusion

I CW could be the next surprise for GW astronomy given the
enhanced sensitivity of the detectors

I In parallel, new fast and computationally robust pipelines are
needed to increase the chance of detection

I Astronomical catalogs (Fermi, INTEGRAL,...) provide good
targets for our directed pipelines if they beat the indirect limit

I It’s a good practice to keep track also of those sources which
couldn’t beat the limit and include them as target in future
searches
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backup peakmap

The sensitivity of the search

h0,min ∝
Λ1

N(f)1/4

√
Sn(f)

Tcoh(f)
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backup peakmap

h0,min ≈
4.02

N(f)
1/4
θ
1/2
thr

√
Sn(f)

Tcoh(f)

(
p0(1− p0)

p21

)1/4√
CRthr(f)−

√
2erfc−1(2Γ)

Γ = 95%C.L., θthr = 2.5, p0 = 0.0755, p1 = 0.0692, p0 prob of
selecting a noise peak
CRthr =

√
2erfc−1(2 ∗Ncand/Ntot) = 6.50

Pfa = 1
Ntot

= 1∑
nifnisd

= 3.98e− 11 if Ncand = 1

h0 =
4π2G

c4
Izzf

2

r
ε (6)
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The theoretical spin-down limit

I A spinning star loses energy (spin-down)
I Rotational energy loss: Ėrot ∝ Izzfrotḟrot
I Gravitational energy loss: ĖGW ∝ I2zzf6rotε2

I We can assume that all the loss of energy of a rotating NS is
caused by GW emission. In other words we assume that the
observed star spin-down (the decrease of the rotation period)
is due to GWs:

Ėrot = ĖGW =⇒ εsd ∝

√
1

Izz

|ḟrot|
f5rot

(7)

From h0 we can express a theoretical upper limit for the GW
amplitude:

hsd ∝
1

r

√
Izz
|ḟrot|
frot

(8)
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The age based limit

If we assume that the star is spinning down with ḟ ∝ fn and it is
spinning significantly more slowly than it was at birth, we can
relate the frequency evolution to the characteristic age τ and
braking index n:

τ =
1

n− 1

(
f

−ḟ

)
n =

ff̈

ḟ2

If the spin-down is dominated by GW from a constant mass
quadrupole, then n = 5 and τ is the true age of the star and the
spindown limit becomes:

hage 6
1

d

√
5GIzz
8c3τ
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The Band-Sampled-Data framework

I What has been done: development of routines to create and
manage band-limited time series (BSD), down-sampled and
partially cleaned from disturbances

I Which data: time series is under the form of
reduced-analytic signal

I A DB of DBs: each BSD file covers 1 month of data and 10
Hz frequency band + routines to switch to a different
configuration

I Flexibility: optimized FFT length for a given search or step of
the analysis (e.g. targeted, follow-up)
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The Multi-Doppler correction

I classical heterodyne

φd(t) =
2π

c
· pn̂(t) · f0(t)

I divide et impera: the 10 Hz
BSD band is divided in
sub-bands

I modified heterodyne (f0(t)
unknown)

φi(t) =
2π

c
· pn̂(t) · fi

I corrected time series

yMD =
10∑
i=1

y′i(t) =
10∑
i=1

yi(t) · e−iφi
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The peak selection

a peak is selected when the following relation holds:

R(i, j) =
SP ;i(fj)

SAR;i(fj)
> θthr = 2.5 (9)

where SP ;i(fj) is the square modulus of the i−th FFT, also known
as periodogram, and SAR;i(fj) an auto-regressive average
spectrum estimation. The ratio is computed for each j−th
frequency bin of a given FFT. Each pair (i, j) made by the i-th
initial time of a selected FFT and the corresponding j−th
frequency bin is a peak.
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