From **multi-band** observations to the nuclear matter equation of state

@ EPS Meeting, Rome, Feb 20

astro-ph: 1902.05078 with M.Fasano (*see poster*), T. Abdelsalhin, V. Ferrari

Andrea Maselli

Fundamental physics with NS

• *How nuclear matter behaves under extreme conditions?*

O Which are the features of neutron stare cores ?

Inverse Stellar Problem

- **O** (too) many models describing the NS interior
- how do we identify the correct one?

microscopic Equation of State...

GWs from binary NS $p = p(\epsilon, ...)$ *EM* (pulsar, LMXB..) *+* Labs

Phenomenological EoS

$$p(\epsilon) \simeq p(\epsilon, \theta_1, \dots, \theta_n)$$

- **O** Fit a large class of EoS with relatively **small** set of parameters
- **O** Best approach to combine NS observables in **different** wavebands
- Useful to infer features of the EoS even if the true one is **not** within current models

So far

:

- **O** *Piecewise polytropes* [*Read PRD 79 '09*]
- **O** Spectral expansions [Lindblom PRD 82 '10]
- **O** Two-step EoS at nuclear and higher densities [Steiner ApJ 722 '10]
- **O** Polynomial fits [Burgio '10]

Piecewise polytropes

EoS parametrised by polytropic segments $\rho_0 < \rho_1 < \rho_2 < \cdots$

$$p(\rho) = K_i \rho^{\Gamma_i}$$

O Each piece specified by $\{K_i, \Gamma_i, \rho_i\}$

♦ If the EoS at low density is fixed

continuity
$$---- K_{i+1} = \frac{p(\rho_i)}{\rho_i^{\Gamma_{i+1}}}$$

O *Fixing the initial density fixes the EoS to*

$$\Gamma_1, \Gamma_2, \Gamma_3 \qquad p_1 = p(\rho_1)$$

Spectral representation

Expansion of the adiabatic index in terms of a basis

O Accurate fit of realistic EoS

$$\Gamma(p) = exp\left[\sum_{k=0}^{3} \gamma_k \ln\left(\frac{p}{p_0}\right)^k\right]$$

• 2 phenomenological EoS with 4 parameters to constrain

 $egin{aligned} egin{aligned} egi$

The observables: GWs

Measurements of the *Love Numbers* from GW170817

```
[LVC PRL 121 '18]
```


- **O** Tidal interactions show up within GWs through the Love Number Λ
- This parameter depends solely on the EoS

The observables: EM

Mass-*radius* measurements from thermonuclear burst in LMXB

[Ozel ApJ 220 '16]

Stay united GWs+EM

	Λ_2	$M_2 \ [M_\odot]$	Λ_1	$M_1 \ [M_\odot]$
GWS	661^{+858}_{-375}	255^{+416}_{-171}	$1.46^{+0.13}_{-0.09}$	
	$R_4 \; [\mathrm{km}]$	$M_4 \ [M_{\odot}]$	R_3 [km]	$\overline{M_3 \ [M_{\odot}]}$
	$10.33^{+2.75}_{-2.38}$	$1.60^{+0.36}_{-0.42}$	$11.46^{+2.53}_{-2.49}$	$1.81^{+0.36}_{-0.48}$

- Λ_i and R_i share a common basis, i.e. $R_i(\gamma_0, \gamma_1, \gamma_2, \gamma_3)$ or $R_i(p_1, \Gamma_1, \Gamma_2, \Gamma_3)$
- **O** Bayesian sample of the EoS parameters using MCMC simulations

 $\mathcal{P}(heta|\mathbf{d}) \propto \mathcal{P}_0(heta) imes \mathcal{L}^{\mathrm{GW}}(M_1, \Lambda_1, M_2, \Lambda_2) imes$ $\mathcal{L}^{\mathrm{EM}}(M_3, R_3) imes \mathcal{L}^{\mathrm{EM}}(M_4, R_4)$

Piecewise parameters

Local complementary information to *integrated* quantities as masses and radii

Do we learn something?

Use the inferred parameters (GW+EM) to reconstruct the mass-radius distributions of GW170817

A new look at the radius

Final constraints on the GW170817 neutron stars

- Final measurement benefit from the multi-band analysis
- High-masses in the EM channel provide extra information on NS cores with larger densities

Back up

How it works in practise

Mapping realistic EoS

EOS	$\log(p_1)$	Γ_1	Га	Γ2	Residual	Vermore	%	M	%	Zmax	%	f	%	I1 220	%	R14	%
DALC	24,200	- 1	- 2	- 5	0.0011	- s,max	1.07	1 477	0.47	~max	0.51	J max	0.07	1.051	0.02	10 5 47	0.54
PALO	34.380	2.227	2.189	2.159	0.0011	0.693	1.3/	1.4//	-0.47	0.374	-0.51	1000	-0.97	1.051	-2.03	10.547	-0.54
SLy	34.384	3.005	2.988	2.851	0.0020	0.989	1.41	2.049	0.02	0.592	0.81	1810	0.10	1.288	-0.08	11.736	-0.21
APRI	33.943	2.442	3.256	2.908	0.019	0.924	9.94	1.683	-1.60	0.581	2.79	2240	1.05	0.908	-2.57	9.361	-1.85
APR2	34.126	2.643	3.014	2.945	0.0089	1.032	0.42	1.808	-1.50	0.605	0.33	2110	-0.02	1.024	-2.34	10.179	-1.57
APR3	34.392	3.166	3.573	3.281	0.0091	1.134	2.72	2.390	-1.00	0.704	0.57	1810	-0.14	1.375	-1.59	12.094	-0.96
APR4	34.269	2.830	3.445	3.348	0.0068	1.160	1.45	2.213	-1.08	0.696	0.22	1940	0.05	1.243	-1.36	11.428	-0.90
FPS	34.283	2.985	2.863	2.600	0.0050	0.883	2.29	1.799	-0.03	0.530	0.67	1880	0.11	1.137	0.03	10.850	0.12
WFF1	34.031	2.519	3.791	3.660	0.018	1.185	7.86	2.133	-0.29	0.739	2.21	2040	0.30	1.085	0.10	10.414	0.02
WFF2	34.233	2.888	3.475	3.517	0.017	1.139	7.93	2.198	-0.14	0.717	0.71	1990	0.03	1.204	-0.59	11.159	-0.28
WFF3	34.283	3.329	2.952	2.589	0.017	0.835	8.11	1.844	-0.48	0.530	2.26	1860	0.59	1.160	-0.25	10.926	-0.12
BBB2	34.331	3.418	2.835	2.832	0.0055	0.914	7.75	1.918	0.10	0.574	0.97	1900	0.47	1.188	0.17	11.139	-0.29
BPAL12	34.358	2.209	2.201	2.176	0.0010	0.708	1.03	1.452	-0.18	0.382	-0.29	1700	-1.03	0.974	0.20	10.024	0.67
ENG	34.437	3.514	3.130	3.168	0.015	1.000	10.71	2.240	-0.05	0.654	0.39	1820	-0.44	1.372	-0.97	12.059	-0.69
MPA1	34.495	3.446	3.572	2.887	0.0081	0.994	4.91	2.461	-0.16	0.670	-0.05	1700	-0.18	1.455	-0.41	12.473	-0.26
MS1	34.858	3.224	3.033	1.325	0.019	0.888	12.44	2.767	-0.54	0.606	-0.52	1400	1.67	1.944	-0.09	14.918	0.06
MS2	34.605	2.447	2.184	1.855	0.0030	0.582	3.96	1.814	-0.87	0.359	-1.96	1250	2.25	1.659	0.42	13.711	2.65
MS1b	34.855	3.456	3.011	1.425	0.015	0.889	11.38	2.776	-1.03	0.614	-0.56	1420	1.38	1.888	-0.64	14.583	-0.32
PS	34.671	2.216	1.640	2.365	0.028	0.691	7.36	1.755	-1.53	0.355	-1.45	1300	-2.39	2.067	-3.06	15.472	3.72
GS1 ^a	34.504	2.350	1.267	2.421	0.018	0.695	0.49	1.383	-1.08	0.402	-2.30	1660	9.05	0.771	-3.71	ь	
GS2 ^a	34.642	2.519	1.571	2.314	0.026	0.592	16.10	1.653	-0.30	0.339	7.71	1340	3.77	1.796	-3.33	14.282	0.18
BGN1H1	34.623	3.258	1.472	2.464	0.029	0.878	-7.42	1.628	0.39	0.437	-3.55	1670	-2.08	1.504	0.56	12.901	-1.96
GNH3	34.648	2.664	2.194	2.304	0.0045	0.750	2.04	1.962	0.13	0.427	0.37	1410	-0.04	1.713	0.38	14.203	-0.28
H1	34.564	2.595	1.845	1.897	0.0019	0.561	2.81	1.555	-0.92	0.311	-1.47	1320	-1.46	1.488	-1.45	12.861	-0.03
H2	34.617	2.775	1.855	1.858	0.0028	0.565	1.38	1.666	-0.77	0.322	-0.55	1280	-1.29	1.623	-0.82	13.479	0.29
H3	34.646	2.787	1.951	1.901	0.0070	0.564	7.05	1.788	-0.79	0.343	1.07	1290	-0.88	1.702	-1.18	13.840	0.31
H4	34.669	2.909	2.246	2.144	0.0028	0.685	4.52	2.032	-0.85	0.428	-1.01	1400	-1.28	1.729	-1.18	13.759	1.45
H5	34.609	2,793	1.974	1.915	0.0050	0.596	1.65	1.727	-1.00	0.347	-0.82	1340	-1.55	1.615	-1.31	13.385	0.40
H6 ^a	34,593	2.637	2.121	2.064	0.0087	0.598	11.71	1.778	0.07	0.346	8.65	1310	5.33	1.623	-2.19	13.501	0.09
H7	34.559	2.621	2.048	2.006	0.0046	0.630	1.82	1.683	-1.12	0.357	-0.57	1410	-1.52	1.527	-2.33	12.992	0.23

Spectral parameters

• Best constraints for the high-density parameters

Radius: piecewise vs spectral

