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The Lense-Thirring effect and gravitomagnetism

Gravitomagnetism is a peculiarity of Einstein's theory of General Relativity

• it is strongly connected to the concepts of inertia (how it originates) and rotation
(apparent forces like gravitational forces)

• ‘’inertia here arises from mass-energy there’’, represents a link to Mach’s ideas…

• Gravitomagnetism has no classical
(Newtonian) gravitational counterpart,
but it has a strong analogy with
magnetism

 = mass-charge density

j = mass-current density

Gravitoelectromagnetic fields →𝐸𝐺 , 𝐵𝐺



Gravito-electromagnetism: linearized theory of General Relativity (GR)

In the Weak-Field and Slow-Motion (WFSM) limit of the theory of GR, Einstein’s equations reduce to a form quite similar to
those of electromagnetism. Following this approach we have a:

• gravitoelectric field produced by masses, analogous to the electric field produced by charges

• gravitomagnetic field produced by mass currents, analogous to the magnetic field produced by electric currents.
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Formal analogy with electrodynamics: linearized theory of General Relativity (WFSM limit)


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This phenomenon is known as dragging of gyroscopes 
or dragging of inertial frames

Therefore, mass currents (as the rotating Earth) drag  
gyroscopes and change the orientation of their axes

The Lense-Thirring effect and gravitomagnetism



The Lense-Thirring effect and gravitomagnetism

These are the results of the frame–dragging effect or Lense–Thirring effect:

moving masses (i.e., mass–currents) are rotationally dragged by the angular 

momentum of the primary body (mass–current)

𝑑Ω

𝑑𝑡
𝑠𝑒𝑐

=
2𝐺

𝑐2𝑎3
𝐽⨁

1 − 𝑒2 Τ3 2

𝑑𝜔

𝑑𝑡
𝑠𝑒𝑐

= −
6𝐺

𝑐2𝑎3
𝐽⨁

1 − 𝑒2 Τ3 2
cos 𝑖

Lense-Thirring, Phys. Z, 19, 1918 

The so-called Lense-Thirring effect (1918) is a consequence of the Gravitomagnetic field of
the Earth produced by its rotation, i.e. by its Angular Momentum:



The LAser RAnged Satellites Experiment (LARASE) goals:

The LARASE experiment and its goals

• The main goal is to provide accurate measurements for the gravitational interaction in the weak-field
and slow-motion limit of General Relativity by means of a very precise laser tracking of geodetic
satellites orbiting around the Earth (the two LAGEOS and LARES)

• Beside the quality of the tracking observations, guaranteed by the powerful Satellite Laser Ranging (SLR)
technique of the International Laser Ranging Service (ILRS), also the quality of the dynamical models
implemented in the Precise Orbit Determination (POD) software plays a fundamental role in order to
obtain precise and accurate measurements

• The models have to account for the perturbations due to both gravitational and non-gravitational forces
in such a way to reduce as much as possible the difference between the observed range, from the
tracking, and the computed one, from the models

• In particular, LARASE aims to improve the dynamical models of the current best laser-ranged satellites in
order to perform a precise and accurate orbit determination, able to benefit also space geodesy and
geophysics
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The LARASE experiment and its goals

LAser GEOdynamic Satellite

LAGEOS II

LAGEOS (NASA 1976)

LAGEOS II (NASA/ASI 1992) 

LARES (ASI 2012)

LAser RElativity Satellite

CC BY 3.0

LAGEOS, LAGEOS II and LARES 

orbit, size, mass and materials



The LARASE activities:

The LARASE experiment and its goals

1. Review of the literature, technical notes and all the documentation (NASA, ALENIA, ASI) related with the
structure of the satellites and their physical characteristics

2. A reconstruction of the internal and external structure of the satellites with finite elements techniques

3. New spin model for the two LAGEOS satellites and LARES accounting of their complex interaction with
the Earth's magnetic field: LASSOS (LArase Satellites Spin mOdel Solutions)

4. New models for the thermal thrust perturbations, also with a Finite Element Model (FEM)

5. Impact of the neutral drag on the two LAGEOS satellites and on LARES

6. Precise Orbit Determination for the two LAGEOS satellites and for LARES

7. Solid and Ocean tides on the two LAGEOS satellites and on LARES

8. Gravitational perturbations with estimate of the spherical harmonics (SH) of low degree

9. Fundamental Physics measurements



Some results: moments of inertia and internal structure

The LARASE experiment and its goals

• The core is made of BRASS

• The stud is made of BERYLLIUM and COPPER



Spin Models

The rotational dynamics of a satellite represents a very important issue that deeply
impacts the goodness of the orbit modelling

Indeed, the modelling of several disturbing effects (like the thermal thrust ones) depends
on the knowledge of the spin period and orientation in the inertial space:

1. Yarkovsky–Schach effect

2. Earth–Yarkovsky (Rubincam) effect

3. Asymmetric reflectivity from the satellite surface

Their modelling will greatly improve the POD of the two LAGEOS satellites avoiding the
current (and significant) use of empirical accelerations during the data reduction

The LASSOS model for the spin



Past Spin Models

The best spin models developed in the past are:

1. Bertotti and Iess (JGR 96 B2, 1991)

2. Habib et al. (PRD 50, 1994)

3. Farinella, Vokrouhlicky and Barlier (JGR 101, 1996); Vokrouhlicky (GRL 23, 1996)

4. Andrés, 1997 (PhD Thesis) and LOSSAM

All of these studies, with the exception of Habib et al., attack and solve the problem of the
evolution of the rotation of a satellite in a terrestrial inertial reference system, in the so-called
rapid spin approximation and they introduce equations for the external torques that are averaged
over time; their fit to the spin observations was good, especially in the case of the LOSSAM model
for the LAGEOS II satellite. Habib et al. use a body-fixed reference system and non-averaged
torques; their model does not fit so well the observations

The LASSOS model for the spin



LARASE Spin Model LASSOS (LArase Satellites Spin mOdel Solutions)

We have deeply reviewed previous spin models, in particular we:

• first built our own spin model in the rapid spin approximation

• adopted non-averaged torques in the equations to describe the slow spin approximation: we
solved the problem of a metallic sphere rotating in an alternate magnetic field

• introduced in the equations all known possible torques (like in LOSSAM model)

• solved the equations in a body-fixed reference system in order to better describe the
misalignment between the symmetry axis and the spin

• included in the equations the terms due to the transversal asymmetry

• carefully studied the satellites moments of inertia

The LASSOS model for the spin



Spin Orientation: , Blue = LARASE model for the rapid-spin 
Red = LARASE general model

The LARASE experiment and its goals

LArase Satellites Spin mOdel Solutions (LASSOS)

LARASE Spin Model: results for LAGEOS II



Rotational Period: P

The LARASE experiment and its goals

LArase Satellites Spin mOdel Solutions (LASSOS)

LARASE Spin Model: results for LAGEOS II

Blue = LARASE model for the rapid-spin 
Red = LARASE general model



Thermal effects and their modelling

An intricate role, among the complex non-gravitational perturbations, is played by the subtle
thermal thrust effects that arise from the radiation emitted from the satellite surface as
consequence of the non uniform distribution of its temperature

In the literature of the older LAGEOS satellite
this problem was attacked since the early 80s’ of
the past century to explain the (apparently)
anomalous behavior of the along-track
acceleration of the satellite, characterized by a
complex pattern:

Rubincam, Afonso, Ries, Scharroo, Farinella,
Metris, Vokrouhlicky, Slabinsky, Lucchesi,
Andres, …

represents a non exhaustive list of the
researchers that have successfully worked on
this very important issue



• A deep physical characterization of the satellite
– emission and absorption coefficients, thermal conductivity, heat capacity, thermal inertia, …

• Rotational dynamics of the satellite
– Spin orientation and rate

• Radiation sources
– Sun and Earth

The dynamical problem to solve is quite complex and should account of the following main
aspects:

Thermal effects and their modelling



• We developed a simplified thermal model of the satellite based on
– the energy balance equation on its surface
– a linear approach for the distribution of the temperature with respect to its equilibrium (mean) temperature

• A general thermal model based on
– a satellite (metallic structure) in thermal equilibrium
– the CCRs rings are at the same temperature of the satellite
– for each CCR the thermal exchange with the satellite is computed

We have tackled the problem following the two approaches considered in the past in the
literature (but with some differences):

𝑑𝑄𝑖
𝑑𝑡

≅෍
𝑗
𝑃𝑗 − 𝜀𝑗𝜎𝐴𝑒𝑥𝑡,𝑗𝑇𝑖

4 +෍
𝑘
𝑅𝑖,𝑘 𝑇𝑘

4 − 𝑇𝑖
4 +෍

𝑘
𝐶𝑖,𝑘 𝑇𝑘 − 𝑇𝑖 +⋯ = ℋ𝑖

𝜕𝑇𝑖
𝜕𝑡

Absorbed power Emitted power Power exchanged 
by radiation

Power exchanged 
by conduction

Thermal effects and their modelling



• The solar Yarkovsky-Schach effect
– an anisotropic emission of thermal radiation that arises from the temperature gradients across the surface

produced by the solar heating and the thermal inertia of the various parts (mainly from the CCRs)
– it produces long-term effects when the thermal radiation is modulated by the eclipses

• The Earth Yarkovsky thermal (or Rubincam) effect
– the temperature gradients responsible of the anisotropic emission of thermal radiation are produced by the

Earth’s infrared radiation
– the bulk of the effect is due to the CCRs and their thermal inertia

• The asymmetric reflectivity effect

The main perturbations to be taken into account are:

In the following only the Yarkovsky-Schach effect will be considered

Thermal effects and their modelling



• The satellite mean temperature
– T0

• The temperature difference between the CCRs of the hemisphere facing the Sun with respect 
to those in the dark side

– T

• The CCRs thermal inertia
– 

In case of a simplified thermal model we can skip the details of a complete characterization
of the satellite thermal behavior. What really matters are:

• In the following the results for the LAGEOS II satellite are shown

• The LASSOS (LArase Satellites Spin mOdel Solutions) general spin model has been used

Thermal effects and their modelling



Analysis performed for the Yarkovsky-Schach effect:

• We run our routine over a 20 years time span from MJD 48932, i.e. Nov. 6th 1992, and we
computed the effects on the orbit elements of LAGEOS II

• We compared the results with the residuals in the satellite orbit elements that we obtained
from a POD with GEODYN II:

o Background gravity model: EIGEN-GRACE02S

o Arc length of 7 days

o No empirical accelerations

o Thermal effects (Yarkovsky Schach and Rubincam) not modelled

o General relativity modelled with the exception of the Lense-Thirring effect

Thermal effects and their modelling



Orbit perturbation and comparison with the residuals: semi-major axis

𝒅𝒂

𝒅𝒕
=

𝟐

𝒏 𝟏 − 𝒆𝟐
𝑻 + 𝒆 𝑻 𝐜𝐨𝐬 𝒇 + 𝑹𝐬𝐢𝐧𝒇

Thermal effects and their modelling



Orbit perturbation and comparison with the residuals: eccentricity

𝒅𝒆

𝒅𝒕
=

𝟏 − 𝒆𝟐

𝒏𝒂
𝑹sin 𝒇 + 𝑻 𝐜𝐨𝐬𝒇 + cos𝒖

Thermal effects and their modelling



Orbit perturbation and comparison with the residuals: argument of pericenter

𝒅𝝎

𝒅𝒕
=

𝟏 − 𝒆𝟐

𝒏𝒆𝒂
−𝑹cos 𝑓 + 𝑻 sin 𝑓 +

𝟏

𝟏 − 𝒆𝟐
sin𝒖 −

𝑾

𝒏𝒂𝟐 𝟏 − 𝒆𝟐

𝟏

tan 𝒊
𝒓 sin 𝜔 + 𝑓

Thermal effects and their modelling



Preliminary comparison between the simplified and the general thermal model

Accelerations in Gauss co-moving frame

Thermal effects and their modelling



Preliminary comparison between the simplified and the general thermal model

⎯ Residuals
⎯ Average model
⎯ General model

Semi-major axis

Thermal effects and their modelling



Preliminary comparison between the simplified and the general thermal model

Thermal effects and their modelling

General model with all thermal effects

Semi-major axis



Preliminary comparison between the simplified and the general thermal model

⎯ Residuals
⎯ Average model
⎯ General model

Eccentricity

Thermal effects and their modelling



Preliminary comparison between the simplified and the general thermal model

⎯ Residuals
⎯ Average model
⎯ General model

Argument of pericenter

Thermal effects and their modelling



The correct knowledge of the Earth’s gravitational field impacts significantly on the Lense-
Thirring effect measurement:

Model for the Earth’s gravitational field

ሶΩ𝑐𝑙𝑎𝑠𝑠 𝑠𝑒𝑐
= −

3

2
𝑛

𝑅⨁
𝑎

2 cos 𝑖

1 − 𝑒2 2
− 5 ҧ𝐶20 +⋯

ሶΩ𝐿𝑇 𝑠𝑒𝑐
=

2𝐺

𝑐2𝑎3
𝐽⨁

1 − 𝑒2 Τ3 2

with important (possible) systematic effects…
 = even and m = 0



The magnitude of the effect to be measured

Model for the Earth’s gravitational field

ሶΩ𝐿𝑇 𝑠𝑒𝑐
=

2𝐺

𝑐2𝑎3
𝐽⨁

1 − 𝑒2 Τ3 2

30 mas  1.8 m

The effect on the orbit is quite small
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By solving a linear system of three equations in three unknowns, we can solve for the
relativistic precession while reducing the impact in the measurement of the non perfect
knowledge of the Earth’s gravitational field:

Model for the Earth’s gravitational field

ሶΩ𝑐𝑜𝑚𝑏 = ሶ𝛿Ω𝑟𝑒𝑠
𝐿1 + 𝑘1𝛿 ሶΩ𝑟𝑒𝑠

𝐿2 + 𝑘2𝛿 ሶΩ𝑟𝑒𝑠
𝐿𝑅 • LT effect observable

• k1 and k2 are such that to cancel the unmodelled
effects/errors of two even zonal harmonics (order m=0) of the
Earth’s gravitational field

ሶΩ2
𝐿1𝛿 ҧ𝐶2,0 + ሶΩ4

𝐿1𝛿 ҧ𝐶4,0 + ሶΩ6
𝐿1𝛿 ҧ𝐶6,0 + ሶΩ𝐿𝑇

𝐿1𝜇 +⋯ = 𝛿 ሶΩ𝑟𝑒𝑠
𝐿1

ሶΩ2
𝐿2𝛿 ҧ𝐶2,0 + ሶΩ4

𝐿2𝛿 ҧ𝐶4,0 + ሶΩ6
𝐿2𝛿 ҧ𝐶6,0 + ሶΩ𝐿𝑇

𝐿2𝜇 +⋯ = 𝛿 ሶΩ𝑟𝑒𝑠
𝐿2

ሶΩ2
𝐿𝑅𝛿 ҧ𝐶2,0 + ሶΩ4

𝐿𝑅𝛿 ҧ𝐶4,0 + ሶΩ6
𝐿𝑅𝛿 ҧ𝐶6,0 + ሶΩ𝐿𝑇

𝐿𝑅𝜇 +⋯ = 𝛿 ሶΩ𝑟𝑒𝑠
𝐿𝑅

ሶΩ𝑐𝑙𝑎𝑠𝑠 𝑠𝑒𝑐
= −

3

2
𝑛

𝑅⨁
𝑎

2 cos 𝑖

1 − 𝑒2 2 − 5 ҧ𝐶20 +⋯

 = 1 if General Relativity is correct
 = 0 if Newtonian physiscs is correct



In our analysis we taken into account the time dependency of the main even zonal
harmonics on the basis of GRACE monthly solutions and not simply the constant values for
these harmonics provided by their static solutions

Model for the Earth’s gravitational field

C40 C60C20

We fitted the first 15 even zonal harmonics from GRACE data 
with a linear trend, and we modelled them in our code as:

ҧ𝐶ℓ,0(t)= ҧ𝐶ℓ,0 𝑡0 + ሶҧ𝐶ℓ,0 𝑡 − 𝑡0



We estimate the even zonal harmonics of low degree with the LT effect: comparison with
GRACE results

Quadrupole coefficient

Model for the Earth’s gravitational field



Octupole coefficient

We estimate the even zonal harmonics of low degree with the LT effect: comparison with
GRACE results

Model for the Earth’s gravitational field



In our analysis we considered several solutions for the gravitational field of the Earth’s
from GRACE and GOCE missions:

Model for the Earth’s gravitational field

1. EIGEN-GRACE02S (2004)
2. GGM05S (2014) (official field of the ILRS)
3. ITU_GRACE16 (2016)
4. Tonji-Grace02s (2017)
5. Tonji-Grace02k (2018)
6. GOSG01S (2018)

This allows us to better estimate and constrain systematics errors among the different
solutions



Precise orbit determination (POD)

Analysis with GEODYN II over a time span of about 25.3 years (from October 30, 1992)

Geopotential (static part) JGM–3; EGM–96; CHAMP; GRACE; GOCE

Geopotential (tides) Ray GOT99.2

Lunisolar + Planetary Perturbations JPL ephemerides DE–403

General relativistic corrections PPN

Direct solar radiation pressure Cannonball model

Albedo radiation pressure Knocke–Rubincam model

Yarkovsk –Schach effect Afonso et al., 1980, Farinella, 1996, LARASE (2018)

Earth–Yarkovsky effect Rubincam 1987 – 1990  model

Spin–axis evolution Farinella et al., 1996 model, LARASE (2018) model

Stations position ITRF2000; ITRF 2008; ITRF2014

Ocean loading Scherneck model (with GOT99.2 tides)

Polar motion IERS (estimated)

Earth rotation VLBI + GPS



Precise orbit determination (POD)

Range residuals of the three satellites (MJD=48925 - MJD=58165) [cm] Mean Sigma

LAGEOS -0.60 5.9

LAGEOS II -0.75 3.5 

LARES -0.02 4.1 

Analysis 0001 with empirical accelerations
Analysis 0002 with no empirical accelerations

with empirical accelerations

POD on a 25.3 yr timespan



Precise orbit determination (POD)

[cm] Mean Sigma

LAGEOS 2.3 1.5

LAGEOS II 1.5 0.4 

LARES 3.3 0.6 

Analysis 0001 with empirical accelerations
Analysis 0002 with no empirical accelerations

with empirical accelerations

RMS of the three satellites (MJD=48925 - MJD=58165)

POD on a 25.3 yr timespan



A new measurement of the Lense-Thirring effect

New aspects with respect to previous measurement of the LT effect:

• We considered several models for the background gravitational field of the Earth

▪ This allows to highlight possible systematics among the different models

• For the first 10 even zonal harmonics we considered their explicit time dependency following
the monthly solutions from GRACE measurements

▪ This has reduced the systematic error of the background gravitational field

• Together with the relativistic LT precession we estimated also some of the low-degree even
zonal harmonics (=even and m=0) of the background gravitational field

▪ This allows to estimate the direct correlation between the relativistic LT precession with the
coefficients of the gravitational field



A new measurement of the Lense-Thirring effect

New aspects with respect to previous measurement of the LT effect:

• The relativistic LT precession has been measured both in the i) residuals of the rates of the
combined nodes and in their ii) integration

▪ This is the first time that the measurement has been performed on the rate of the combined
observables: case i)

• The measurement has been obtained both via linear fits and non-linear fits

▪ This is also the first time that a reliable measurement of the LT precession has been obtained by
means of a simple linear fit



A new measurement of the Lense-Thirring effect

A new preliminary measurement of the LT effect

• We run GEODYN II over a time span of about 6.5 years (2359 days) from MJD 56023, i.e. April 6th

2012, and we computed the effects on the orbit elements of LAGEOS, LAGESOS II and LARES:

o Background gravity model: GGM05S + other fields from GRACE and GOCE

o Arc length of 7 days

o No empirical accelerations

o Thermal effects (Yarkovsky Schach and Rubincam) not modelled

o General relativity modelled with the exception of the Lense-Thirring effect

• LT effect observable

• k1 and k2 are such that to cancel the unmodelled
effects/errors of two even zonal harmonics (order m=0) of the
Earth’s gravitational field: C2,0 and C4,0

ሶΩ𝑐𝑙𝑎𝑠𝑠 = −
3

2
𝑛

𝑅⨁
𝑎

2 cos 𝑖

1 − 𝑒2 2
𝐽2 +⋯

30 mas  1.8 m

ሶΩ𝑐𝑜𝑚𝑏 = ሶ𝛿Ω𝑟𝑒𝑠
𝐿1 + 𝑘1𝛿 ሶΩ𝑟𝑒𝑠

𝐿2 + 𝑘2𝛿 ሶΩ𝑟𝑒𝑠
𝐿𝑅



A new measurement of the Lense-Thirring effect

Residuals in the right ascension of the ascending node rate of the satellites

These residuals are due to unmodeled:

• periodic effects 
▪ thermal thrust effects
▪ asymmetric reflectivity
▪ tides + gravitational field

• secular effect related with the Lense-Thirring precession

ሶΩ ሶΩ ሶΩ



A new measurement of the Lense-Thirring effect

Spectral analysis of the R.A. of the ascending node rate of
the satellites and of their combination:

𝑘1 ≅ 0.345
𝑘2 ≅ 0.073

ሶΩ𝑐𝑜𝑚𝑏 = ሶ𝛿Ω𝑟𝑒𝑠
𝐿1 + 𝑘1𝛿 ሶΩ𝑟𝑒𝑠

𝐿2 + 𝑘2𝛿 ሶΩ𝑟𝑒𝑠
𝐿𝑅



A new measurement of the Lense-Thirring effect

Combined residuals in the right ascension of the ascending node rate of the satellites and
the of the combined nodes

ሶΩ𝑐𝑜𝑚𝑏 = ሶ𝛿Ω𝑟𝑒𝑠
𝐿1 + 𝑘1𝛿 ሶΩ𝑟𝑒𝑠

𝐿2 + 𝑘2𝛿 ሶΩ𝑟𝑒𝑠
𝐿𝑅 ሶΩ𝐺𝑅

𝑐𝑜𝑚𝑏 = 50.17 𝑚𝑎𝑠/𝑦𝑟

ሶΩ𝑐𝑜𝑚𝑏 Ω𝑐𝑜𝑚𝑏



A new measurement of the Lense-Thirring effect

Correlations between the estimated quantities:



A new measurement of the Lense-Thirring effect

Combined residuals in the right ascension of the ascending node rate of the satellites

ሶΩ𝑐𝑜𝑚𝑏 = ሶ𝛿Ω𝑟𝑒𝑠
𝐿1 + 𝑘1𝛿 ሶΩ𝑟𝑒𝑠

𝐿2 + 𝑘2𝛿 ሶΩ𝑟𝑒𝑠
𝐿𝑅 ሶΩ𝐺𝑅

𝑐𝑜𝑚𝑏 = 50.17 𝑚𝑎𝑠/𝑦𝑟

𝑦 = ሶΩ𝐹𝑖𝑡
𝑐𝑜𝑚𝑏𝑡

𝝁𝑭𝒊𝒕 − 𝟏 = 𝟐 × 𝟏𝟎−𝟑 ± 𝟕 × 𝟏𝟎−𝟑 ± 𝜹𝝁𝒔𝒚𝒔

𝝁𝑭𝒊𝒕 − 𝟏 = −𝟏𝟗 × 𝟏𝟎−𝟑 ± 𝜹𝝁 ± 𝜹𝝁𝒔𝒚𝒔

From the mean value:

From the slope:



A new measurement of the Lense-Thirring effect

A very preliminary estimate of the systematics

ሶΩ𝑐𝑜𝑚𝑏 = ሶ𝛿Ω𝑟𝑒𝑠
𝐿1 + 𝑘1𝛿 ሶΩ𝑟𝑒𝑠

𝐿2 + 𝑘2𝛿 ሶΩ𝑟𝑒𝑠
𝐿𝑅

ሶΩ𝐺𝑅
𝑐𝑜𝑚𝑏 = 50.17 𝑚𝑎𝑠/𝑦𝑟

𝝁𝑭𝒊𝒕 − 𝟏 = 𝟐 × 𝟏𝟎−𝟑 ± 𝟕 × 𝟏𝟎−𝟑 ± 𝜹𝝁𝒔𝒚𝒔

𝝁𝑭𝒊𝒕 − 𝟏 = −𝟏𝟗 × 𝟏𝟎−𝟑 ± 𝜹𝝁 ± 𝜹𝝁𝒔𝒚𝒔

From the mean value:

From the slope:

 [%]  [%]

Perturbations non.-int res. int. res.

Gravitational field 2.20 0.74

Periodic effects 3.00 (7.00) 0.29 (0.54)

de Sitter 0.30 0.30

RSS 3.73 (7.34) 0.85 (0.96)

7010−3

1010−3



Conclusions and future work

The activities of LARASE proceeds in terms of:

• development of new reliable models

✓ for the (subtle) non-gravitational perturbations (Spin and Thermal Thrust effects)

✓ as well as (in part) for the gravitational ones

• precise orbit determination (POD)

✓ tracking data, models, stations, reference frames, …

• precise and accurate measurements of the gravitational interaction in the
weak-field and slow-motion limit of General Relativity

✓ Lense-Thirring and other effects …



Conclusions and future work

• in the centennial of the Lense-Thirring effect, we presented a new precise
measurement for this relativistic precession on the combined orbits of the
LAGEOS, LAGEOS II and LARES satellites:  0.2 %

• next goal is to provide a careful evaluation of the systematic errors of the
measurement:  1-2 % (work in progress)

• the Lense-Thirring effect represents a weak manifestation of Mach’s
Principle and it proves that mass-currents in general relativity contribute to
the curvature of space-time



LARASE website

http://larase.roma2.infn.it

LARASE is funded by the Italian INFN             
CSN2 on astroparticle physics
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Neutral drag perturbation for LARES



Comparison SATRAP - GEODYN
Decay of the semimajor axis of LARES on a timespan of 5.8 and the solar activity

𝒅𝒂

𝒅𝒕
≅ −𝟐. 𝟒𝟒 Τ𝒎𝒎 𝒅

𝑻 ≅ −𝟏. 𝟐𝟖𝟗 × 𝟏𝟎−𝟏𝟏 Τ𝒎 𝒔𝟐



Gauss accelerations for LARES obtained by SATRAP

𝒅𝒂

𝒅𝒕
=

𝟐

𝒏 𝟏 − 𝒆𝟐
𝑻 + 𝒆 𝑻 𝐜𝐨𝐬𝒇 + 𝑹𝐬𝐢𝐧𝒇 𝒅𝒆

𝒅𝒕
=

𝟏 − 𝒆𝟐

𝒏𝒂
𝑹𝐬𝐢𝐧 𝒇 + 𝑻 𝐜𝐨𝐬 𝒇 + 𝐜𝐨𝐬𝒖

Comparison SATRAP - GEODYN



GEODYN residuals for the semi-major axis and eccentricity of LARES compared with their
predictions for the neutral drag perturbation obtained with SATRAP and the application of
Gauss equations

𝒅𝒂

𝒅𝒕

𝒅𝒆

𝒅𝒕

Comparison SATRAP - GEODYN

𝒅𝒂

𝒅𝒕
=

𝟐

𝒏 𝟏 − 𝒆𝟐
𝑻 + 𝒆 𝑻 𝐜𝐨𝐬 𝒇 + 𝑹𝐬𝐢𝐧 𝒇

𝒅𝒆

𝒅𝒕
=

𝟏 − 𝒆𝟐

𝒏𝒂
𝑹𝐬𝐢𝐧 𝒇 + 𝑻 𝐜𝐨𝐬 𝒇 + 𝐜𝐨𝐬 𝒖



Constraints on 1/r^2



Yukawa-like long range interaction

Target:

Fit:

Post data reduction analysis: 13-yr analysis of the LAGEOS II orbit (FIT)

We obtained b  3294.6 mas/yr, very close to the
prediction of GR.

The discrepancy is just 0.01%.

From a sensitivity analysis, with constraints on some of
the parameters that enter into the least squares fit, we
obtained an upper bound of 0.2%.

Fit to the pericenter residuals: ( )
2

0
1

2
sin

n
FIT

i i
i

i

a b t c t t D t
P




=

 
 = +  + − +  + 

 


Δ ሶ𝜔𝑟𝑒𝑙
𝐿𝐼𝐼 = 3294.95 Τ𝑚𝑎𝑠 𝑦𝑟

b=Δ ሶ𝜔𝑓𝑖𝑡
𝐿𝐼𝐼 ≃ 3294.56 Τ𝑚𝑎𝑠 𝑦𝑟

GP NGP GR
     =  +  + 

𝜀 = 1 − (0.12 ± 2.10) ∙ 10−3 ± 2.5 ∙ 10−2



Yukawa-like long range interaction

• These very weak NLRI are usually described by means of a Yukawa–like potential with strength  and range :

• This Yukawa–like parameterization seems general (at the lowest order interaction and non-relativistic limit):

M1 = Mass of the primary source;

M2 = Mass of the secondary source;

G = Newtonian gravitational constant;

r = Distance;

 = Strength of the interaction; K1,K2 = Coupling strengths;

 = Range of the interaction;  = Mass of the light-boson;

ħ = Reduced Planck constant; c = Speed of light

─  scalar field with the exchange of a spin–0 light boson; 

─  tensor field with the exchange of a spin–2 light boson;

─  vector field with the exchange of a spin–1 light boson;

𝑉𝑦𝑢𝑘= − 𝛼
𝐺∞𝑀1

𝑟
𝑒− ൗ𝑟 𝜆

𝛼 =
1

𝐺∞

𝐾1
𝑀1

∙
𝐾2
𝑀2

𝜆 =
ℏ

𝜇𝑐

The measurement of the pericenter advance

Why measuring the shift of the argument of pericenter?



Yukawa-like long range interaction
Summary of the constraints obtained

Lucchesi, Peron, Phy. Rev. D, 89, 2014



Yukawa-like long range interaction

Laboratory

Lake
Tower

Earth-LAGEOS

LAGEOS-Lunar

Lunar Precession
Planetary

meters

Composition independent experiments

Constraints on a long-range force: Yukawa like interaction

85 1010 −− 

Previous 
limits with 
LAGEOS’s:

The region above 
each curve is ruled 
out at the 95.5% 
confidence level

Reference: Coy, Fischbach, Hellings, Standish, & Talmadge (2003)

𝛼 ≅ 0.5 ± 8 ∙ 10−12 ± 101 ∙ 10−12
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