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An extended accelerating body under ‘rigid motion’ by definition has unvarying sep-

aration between its constituents in all comoving inertial frames. Tantamount to a

nonuniform, dynamically changing repulsive gravitational field, how constituents’ fixed
[‘proper’] own-accelerations must individually differ was established by Woodhouse in

2003 using Minkowski spacetime, by Franklin in 2010 using Lorentz transformations,

and by the present author in 2013 using curiously undocumented yet simple inter-rocket
radar period equations. A second ‘pseudo-rigor mortis’ attractive gravitational field

scenario introduced in 2018 is now further considered. In both cases radar trajecto-

ries are shown to exhibit unchanging inverse square root of two geodesic curvature on
corresponding real-metric spacetime surfaces of ubiquitously zero Gauss curvature.
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1. Introduction

An important though ‘one-off’ continuous medium acceleration scenario was intro-

duced in 1909/1910 relativity papers [1, 2] by Einstein’s close colleague Max Born.

Medium constituents—‘increments’ or ‘particles’—undergo fixed but individually

differing [‘proper’] own-accelerations whereby medium-attached observers in ever

changing comoving inertial frames would perceive each other’s separation distances

as remaining constant, a situation markedly different from the likewise germane

homogeneously accelerating medium topic which emerged half a century later and

subsequently became known as Bell’s string paradox. What Born termed ‘rigid

motion’ (‘starre Bewegung’ ) in relativity is however better redesignated as ‘rigor

mortis acceleration’ due to conflicting connotations in differential geometry.

Until recently its exposition has been heavily obscured even in contemporary

textbooks both by unnecessary mathematics as well as by misleading ‘presentism’

formulations. Yet it has remained a core topic in the somewhat muddled literature

of an accelerating extended medium arguably for an odd reason: the scenario’s ex-

pedient status as a ‘cherry picked’ (one might say) one-off showcase coincidentally

compatible with the 1907 Minkowski metric, the latter being a still widely used

yet—where an extended accelerating medium is concerned—otherwise overgener-

alised axiom [3, 4, 5, 6, 7, 8)]. ‘Idealised’ by each medium’s increment i having its

own ‘minuscule rocket’ and being ‘in the limit’ of zero mass—instead of imagining

a comoving gravitational field approach which, as outlined below, is problematic—

Born’s scenario in its traditional variant actually involves a mathematically exceed-

ingly simple scaled ‘rigor mortis’ accelerating increments condition.
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In his widely used 2001/2006 book Relativity, Special, General and Cosmological

([9]§3.8, Fig. 3.3) Wolfgang Rindler, for example, presented a ‘rigid motion’ world-

lines chart on the basis of the complex variables Minkowski metrica, yet neither

presented nor referred to the underlying accelerating increments condition. In the

same context, this emerged implicitly in 2003 as the rockets’ distance separation

c2[ 1
a′ −

1
a ], in a generally erudite book by Nicholas Woodhouse [11] which however

required a six-page derivation likewise invoking a simplistic presentism: “. . . the in-

crease in separation is exactly matched by the Lorentz contraction”. On the other

hand, although his paper misrepresented the ‘contraction’ phenomenon by reiter-

ating (like many other authors) Rindler’s incorrect formulab for the expansion of

a uniformly accelerating medium, Jerrold Franklin [12] in 2010 formally derived

the explicit acceleration relationship as a Lorentz transformations solution without

using Minkowski’s metric (here scaled for a unit acceleration rear rocket):

αi = 1/(1 + li). (1)

A more ‘physical’ radar intervals approach published in 2016 utilised the wholly

neglected area of relativity radar physics whose straightforwardness has (to put it

politely) ‘escaped the notice’ of most relativists. Applied to scaled radar equa-

tion (9) established in [6] (
[
α
f
eτ̀ + 1− α

f
(1 + L)

]
= 1/

[
α
f
e−τ́ + 1− α

f
(1 + L)

]
),

acceleration condition (1) directly yields an unchanging forward radar interval

τ̀ − τ́ = 2ln(1/α
f
) which—in contrast to ever increasing radar intervals in the

uniform acceleration case [6]—is characteristic of rigor mortis acceleration. This

present paper, which also further elaborates upon a second ‘pseudo-rigor mortis’

accelerating medium scenario whereby αi = 1/(1− li), adopts an even more direct

approach based on the hitherto seemingly absent concept of real-metric spacetime.

1.1. The simple nonaccelerating own-surface

Discarding relativity literature’s traditional pseudo-euclidean treatments of space-

time theory, we start with the simplest imaginable example of an extended object’s

spacetime ‘real-metric’ own-surface: a rectangular lattice representing a nonacceler-

ating one-spatial dimensional medium such as a long ‘floating’ spacestation moving

at constant velocity v in a ‘home’ inertial reference frame H. As shown in Fig. 1’s

zero acceleration case, horizontal ‘increment curves’ trace identical own-times τ

of medium increments i identified by their unchanging distance λ = li from the

rear end in each comoving frame C. Vertical lines—‘medium curves’—represent

the whole medium at regular equal own-time intervals. The chart also shows radar

trajectories emitted and reflected at regular time intervals between the front and

rear ends, which are diagonal lines corresponding to scaled unit limit speed in the

unchanging comoving frame C. Radar periods of course remain identical.

aA historical account of Minkowski’s contributions to relativity theory appears in [10].
bLγ in fact constitutes accelerating rockets’ asynchronous spatial dispersal in comoving frames.[7]
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Fig. 1. A nonaccelerating medium’s intrinsic metric own-surface with radar trajectories

2. A ‘hybrid’ accelerating medium category

As already described in [6], our scenario involves two rockets launched a distance

L ≤ 1 apart, with home frame observer clocks and rocket clocks synchronised.

Scaling times by αr/c and lengths by αr/c
2 so that both rear rocket own-thrust

αr and limit cosmic speed c equal one, we label the ‘reference’ rear rocket’s own-

time as τ . An extended medium between the rockets comprises increments i with

launch separation li from the unit thrust rear rocket, each assumed to have its

own ‘minuscule rocket’ as well as being ‘in the limit’ of zero mass. Hence no inter-

increment forces or delays are entailed. The familiar equations relating home frame

time and distance of a fixed own-thrust α rocket with own-time τ , are (dropping i

subscripts)):

αt = sinhατ, v = tanhατ, γ = coshατ, αx = coshατ − 1 and (2)

the hyperbolic world-line equation: (αx+ 1)2 − (αt)2 = 1. (3)

2.1. A shortcut to the rigor mortis condition

On a rigor mortis intrinsic own-surface as in Fig. 2, increment curve path lengths

will trace ‘own-clock-time’ τ progressions of individual increments. These will be

crossed by medium curves where each point’s curved length λ from the rear reflects

the point’s ‘own-length’ from the rear end. From equation (2)ii, the home frame

velocity of each such medium curve’s increment with a fixed own-thrust α, relates

as v = tanh(ατ). Therefore, for any set velocity, increment curve lengths tracing

own-times τ = tanh−1(v)/α are inversely proportional to their respective α values.

By definition, during rigor mortis acceleration, a medium’s incrment separations

∆λ = ∆l remain fixed as v increases. Hence rigor mortis own-surface increment

curves must remain equally spread i.e. they must be parallel. Fig. 2’s ’exploded’

extract shows a ‘miniscule triangle with medium curve segment ∆λ, increment

curve segment ∆τ and radar trajectory curve segment ∆s.
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Fig. 2. Rigor Mortis intrinsic own-surface with radar trajectories

Both forward and reverse radar trajectories have unit limit speed dλ
dτ = 1 in each mo-

mentary inertial frame and accordingly, in the limit, they must cross both medium

curves and increment curves at 45 degrees. Hence the latter are at right angles. By

symmetry therefore, fixed length medium curves must be straight lines. These condi-

tions alone determine that the rigor mortis medium’s own-surface must be a circular

strip as shown. If rear increment own-acceleration α
r

= 1, then ∆τ.α = ∆τ .1 and

from the geometry:

1 + l

1
=

∆τ

∆τ
=

1

α
.

This exactly matches rigor mortis condition (1).

3. Characteristics of rigor mortis accelerations

Fig. 2’s own-surface is shown for rear rocket own-time 0 ≤ τ ≤ 3π/2. Increment

curves (in blue) appear as circular arc segments of radius (1 + l) = 1/α which

metrically correspond to increments’ differing elapsed own-time since launch:

τ = τ/α = τ(1 + l). (4)

These are crossed by straight radial medium curves (red) spread along the surface

at rear increment own-time intervals ∆τ = 3π/32. Slower accelerating increments

nearer the front f need greater clock own-times τ than those nearer rear increment r

at the same shared home frame velocity v = tanh τ = tanh (τα) = tanh (τ/(1 + l)),

and so be relatively stationary to one another in each respective comoving frame.

The own-surface fixed velocity straight line loci also metrically reflect the perceived

unchanging total length of the medium in each co-moving frame C.
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3.1. Home frame spacetime charts and a radar interval

Each own-surface point represents an event characterised by an increment’s medium

curve distance λ(= l) from the rear, as well as by a specific increment own-time τ

corresponding to the circular arc path length progression. As discussed above:

‘rigor mortis’ radar interval τ̀ − τ́ = 2 ln(1/α
f
). (5)

As already detailed in [6], shared velocity events are simultaneous in comoving

frames i.e the associated event time disparities (∆T) are zero. A rigor mortis

medium’s curve thus has the same unchanging total ‘own-length’ L, as in the zero

acceleration scenario.

3.2. Rigor mortis own-surface’s real metric

The rear rocket’s increment curve is a unit radius planar circular arc [cos τ , sin τ , 0]

(expressed as a 3D curve with z = 0). For convenience we use both cylindrical

coordinatesc r = 1 + l, θ = τ = τ/α = τ(1 + l), z = 0, and cartesian coordinates

x = r cos θ, y = r sin θ, z = 0. Hence rigor mortis planar own-surface

RMP (τ , l) =
Cyl

[1 + l, τ(1 + l), 0] =
Cyl

[1 + l, τ, 0] =
xyz

[cos τ, sin τ, 0] (1+l); 0 ≤ l ≤ L.
(6)

A surface’s ‘differential metric’ relates any two minimally apart event points—in

the limit. Therefore dr = dl and dθ = dτ and a surface’s metric interval is ds2 =

dr2 + r2dθ2 i.e. ds2 = dl2 + dτ2. Hence, since in this rigor mortis case λ = l:

rigor mortis own-surface metric ds2
RM

= dτ2 + dλ2. (7)

3.3. ‘Pseudo-rigor mortis’ acceleration

Adopting the alternate pseudo rigor mortis condition αi = 1/(1− li) results in a

(perhaps hitherto unknown ?) case which ‘mirrors’ the rigor mortis scenario whose

own-surface is shown in Fig. 3. Rear and front rocket distance ‘dispersions’ between

events occurring at respective identical home frame velocities, always equal the fixed

launch length. As also explained in [6] however, such events do not simultaneously

share comoving frames due to the associated time disparity ∆T which, curiously, is

exactly twice the shared velocity home frame time disparity ∆T .

Psuedo rigor mortis planar own-surface

PRMP (τ , l) =
Cyl

[1− l, τ(1− l), 0] =
Cyl

[1− l, τ, 0] =
xyz

[cos τ, sin τ, 0] (1−l); 0 ≤ l ≤ L.
(8)

In this case λ = −l, dr = −dl and dθ = dτ/(1− l) and the surface’s metric interval

is ds2 = dr2 + r2dθ2 = dl2 + dτ2. Hence, identical to equation (7):

Pseudo rigor mortis own-surface metric ds2
PRM

= dτ2 + dλ2. (9)

cr here denotes a cylindrical radius coordinate—not to be confused with the same letter’s usage

as a subscript denoting the rear rocket increment.
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Fig. 3. Pseudo rigor mortis own-surface

Fig. 4. Home frame world-surfaces’ hyperbolic world-lines of rigor mortis/pseudo rigor mortis

medium increments with diagonal radar trajectories and fixed-velocity loci.

Fig. 4 shows home frame world-surfaces’ world-lines for the rear and front rockets

and intermediate medium increments, as well as shared velocity medium lines, for

the rigor mortis and pseudo rigor mortis cases. Also shown for the rigor mortis case

are outgoing and reflection radar trajectories emitted from the rear rocket at regular

rear rocket own-time intervals ∆τ = 3π/32. Very notably, radar intervals in terms

of the rear rocket’s own-time clock periods remain constant. Notwithstanding their

obvious straightforwardness, such spacetime chart radar paths have been hitherto

wholly absent from relativity books and papers—a quite remarkable phenomenon.
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Fig. 5. Rigor mortis and pseudo-rigor mortis hemicoidal own-surfaces.

4. The ‘hemicised’ rigor mortis own-surface

Fig 2 and 3’s intrinsic own-surfaces, which are ruled surfaces hosting radially dis-

tributed straight line medium curves, may be isometrically reshaped without altering

its intrinsic metric properties, so as to also extrinsically reflect velocities and also

allow increments’ own-time τ to be extended indefinitely. If made of paper, the

surface would not tear if so deformed. Circular increment curve arcs of Fig. 2 and

Fig. 3’s planar own-surfaces appear twisted in Figures 5 and 6 respective ‘hemicised’

rigor mortis own-surfaces—without being stretched or compressed—in the form of

spherical hemix curves described in [7]. Hemix H =

Rθφ
[1, τ, φ] =

rθz
[v, τ,

1

γ
] =

rθz
[tanh τ, τ, 1/ cosh τ ] =

xyz
[tanh τ cos τ, tanh τ sin τ, 1/ cosh τ ].

(10)

Each hemix’s path length, an increment’s traced own-time τ , is proportional to

its traversed ‘equatorial‘ longitude. Each hemix increment curve representing an

arbitrary fixed acceleration α < 1 lies on a hemisphere of radius 1/α = 1 + l. In

both charts fixed-velocity loci sharing comoving inertial frames appear as constant

length L straight lines radially distributed at colatitude angle φ = sin−1 v and

spread along the own-surfaces at rear rocket own-time intervals ∆τ = 3π/32 for

0 ≤ τ ≤ 3π/2. Respective fixed velocity v medium curves, which are straight lines,

remain likewise unchanged both in length and as well as shared longitude angle θ.

Each such medium curve is rotated so that its inline radius forms a colatitude angle

φ with the vertical axis, where comoving velocity sinφ = v = tanh τ
1+l = tanh τ

r
.

Intrinsically therefore it is still the same own-surface, in spite of being transformed

and re-embedded in a three dimensional mathematical space.

Rigor mortis medium’s own-surface Υ
RM

= [tanh τ cos τ , tanh τ sin τ , 1/ cosh τ ](1+l).

(11)

Pseudo-rigor mortis own-surface Υ
PRM

= [tanh τ cos τ , tanh τ sin τ , 1/ cosh τ ](1−l).
(12)
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Figure 6 shows emitted and reflected radar trajectories still manifesting unchang-

ing radar emission-return own-time periods in terms of ∆τ intervals. Notably, this

own-surface tends asymptotically to become ‘equatorial’ as τ = τ/(1+ l) approaches

infinity i.e. it may progress endlessly. This metric applies to both the planar own-

surface as well as the ‘hemicised’ own-surface. Since all distances and angles remain

unchanged, both surfaces are intrinsically the same i.e. they are isometric.

5. The Minkowski metric’ one-off compatibilities

If we replace the positive sign in our visualisable real variables rigor mortis and

pseudo rigor mortis own-surface metric equations (7) and (9)—which are identical—

by a negative sign, we obtain the equivalent yet non-visualisable complex variable

Minkowski’s pseudo-euclidean metric ds2
RM

= dτ2 − dλ2. (13)

It turns out that, contrary to widespread consensus, these two rigor mortis scenarios

are the sole extended accelerating medium cases where Minkowski spacetime may

be considered valid.[6]

6. Migrants on a rigor mortis gravity train

Let us imagine a series of ‘compartment rockets’ constantly accelerating differ-

ently in accordance with the rigor mortis criterion and somehow joined together

with connecting chambers allowing passengers to migrate between rockets. The

passengers of each compartment age relatively in accordance with their respective

own-acceleration which depends on its relative distance from the rearmost rocket:
τ
τ = 1

α = 1+l
1 . Their respective own-time clocks, synchronised at launch, would

increasingly diverge. Notably, the physical basis behind this is their differently

experienced gravity-like acceleration. Of course other than sensing such differing

accelerations, passengers would not notice any difference in his or her individual

biological feeling of ‘getting older’.

Although a rigor mortis medium’s increments after launch no longer share si-

multaneities in the home frame due their ‘contrived’ acceleration differences, they

are simultaneously relatively stationary in each comoving frame and medium length

remains unchanged. Paradoxically, in each such comoving frame all increment clock

own-times simultaneously differ. Our ‘compound spaceship’ could house a colony

where every member of the community would continue to remain stationary at un-

changing distances relative to everybody else. Passengers could choose to move

towards the rear rocket r or the front rocket f , depending on whether they prefer

to age either more slowly or more quickly compared with other passengers. The

dark green and cyan paths trajectories on the hemicised own-surface represent pas-

sengers choosing to age at a different rate relative to other passengers by moving

towards the more slowly accelerating front inhabitants ages or towards the more

rapidly accelerating rear rocket whose inhabitants age more slowly.
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Fig. 6. The ‘hemicised’ rigor mortis own-surface

If instead of our rigor mortis gravity train compartments each independently

producing its own specific thrust, it were somehow possible to arrange a gravita-

tional field whereby gravity pull across the medium occurred in accordance with

the equation g = 1
1+l , then the same effects would be achieved. Such a gravity field

would need to be not only repulsived and nonuniform, but would also have consis-

tently co-move with the medium itself. The same applies to the pseudo rigor mortis

case which however would entail an attractive gravitational field.

7. Rigor mortis own-surface’s Gauss and geodesics curvatures

Both rigor mortis own-surfaces have zero Gauss curvature throughout by virtue of

Figures 2 and 3 planar forms. As easily shown, radar paths have constant nonzero

geodesic curvature equal to 1/
√

2.

Postscript: A fast track genesis of the geodesic equation

The following demonstrates that geodesic curvature maths, at least where single

spatial dimension relativity is concerned, is not at all as complex as is generally

suggested in the literature. For a path length λ curve ρ = Ω(q1(λ), q2(λ)), ρλ ,
dρ/dλ: ρλ · ρλ = 1; ρλ · ρλλ = 0. Therefore unit vectors ρλ , N and N × ρλ are

orthogonal. Hence ρλλ lies in the plane spanned by unit vectors N and N × ρλ .

dSince the front increments’ own-acceleration is less than that of rear increments.
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Fig. 7. Increment, medium and radar curves on unit thrust own-surface and its Gauss map

We may define the 2nd fundamental form coefficients Bij and the Christoffel

symbols Γrij as the manifold Ω’s second differential components along the nor-

mal and tangent vectors respectively i.e. Ωij = BijN + ΓrijΩr. Accordingly, with

G = |Ω1 ×Ω2|2 being the determinant of the first fundamental form coefficients:

ρλλ , κnN + κgN × ρλ ; kg = ρλλ · (N × ρλ); κn = ρλλ ·N .

ρλλ = qi
,λλ

Ωi + qi
,λ
qj
,λ

(BijN + ΓrijΩr) = (qr
,λλ

+ qi
,λ
qj
,λ

Γrij)Ωr + qi
,λ
qj
,λ
BijN . (14)

kg = N ·ρλ×ρλλ = qi
,λ

(
qr
,λλ

+ qi
,λ
qj
,λ

Γrij

)
N ·(Ωi×Ωr) =

(
q1
,λ

(q2
,λλ

+ qi
,λ
qj
,λ

Γ2
ij)− q2

,λ
(q1
,λλ

+ qi
,λ
qj
,λ

Γ1
ij)
)√

G.

(15)

Special Note: The homogeneously accelerating medium case illustrated in Fig. 7

and dealt with in [8] in detail, will be further discussed in [13] (to be published

shortly).
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