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What is TEOBResumS?
Effective-one-body (EOB)-based waveform model for  
spin-aligned coalescing binaries
• BBH sector improved by Numerical-Relativity information 

• BNS (tidal) sector compatible with high-accuracy NR simulations.  
    Spin-induced quadrupole moments included 

• Public stand-alone C-implementation: 
git clone https://alex_nagar@bitbucket.org/eob_ihes/teobresums.git
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Challenges: 
• physical completeness 
• accuracy  
• efficiency (AR vs NR) 
• 107 templates needed for 

a single event

https://alex_nagar@bitbucket.org/eob_ihes/teobresums.git


2-body problem in GR
Hamiltonian: conservative part of the dynamics 

Radiation reaction: mechanical energy/angular momentum goes away in GWs and  
                              backreacts on the system. 

                             The (closed) orbit CIRCULARIZES and SHRiNks with time 

Waveform

Perturbation Theory 
Post-Newtonian (PN), 
Post-Minkowskian(PM)

Strong-field information 

      EOBNR models

Numerical Relativity: 
(SUPERCOMPUTERS)

Resummed  
PN theory: 

EOB (LAPTOP)

Complementary route: IMRPhenom models 
PN_glue_NR, EOB_glue_NR hybrids (glued waveforms)  
to build phenomenological templates [Khan et al., 2015] 

NR surrogate



Analytical Effective-One-Body approach
Provides a complete description of dynamics and radiation from relativistic binaries
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TEOBResumS: ringdown from NR

5

h(⌧) = e�1⌧�i�0 h̄(⌧)

1. Factorize the fundamental QNM, fit what remains 
2. Global fit all over parameter space 
3. Del Pozzo & AN, PRD 95 (2017) 124034

Damour&AN 2014: NR-informed phenomenological description of postmerger phase
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ter that the first, least-damped, QNM is factored out.
The primary fit e↵ectively models the presence of all the
higher QNMs, that are characterized by lower frequencies
and shorter damping times than the fundamental one.
Ref. [3] focused on the equal-mass, equal-spin case only
and thus used only the corresponding subset of the Simu-
lating eXtreme Spacetimes (SXS) [4] catalog of numerical
waveform data. All SXS waveforms were obtained with
the Spectral Einstein Code [5–12]. We generalize here the
interpolating expressions of Ref. [3], by including almost
all the unequal-mass, unequal-spin dataset present in the
SXS catalog. We thus build a general analytical expres-
sion of the post-merger waveform that is a function of the
symmetric mass ratio ⌫ ⌘ m1m2/(m1 + m2)2 and of the
dimensionless spins �1,2 ⌘ S1,2/(m1,2)2 of the two black
holes as well as of the final mass MBH and (complex) fre-
quency �1 of the fundamental QNM of the final remnant.
Although we restrict, for simplicity, to considering only
the ` = m = 2 mode, the method discussed here may be
extended to model the post-merger part of subdominant
multipolar modes 1. The interpolating fit presented here
is also now part of the NR-calibrated EOB ihes [14, 15].

II. TEMPLATE CONSTRUCTION

We begin by introducing a convenient notation. The
multipolar decomposition of the waveform is given by
h+ � ih⇥ =

P
`,m h`m�2Y`m(✓,�), and we focus on the

` = m = 2 “post-merger”, ⌫-scaled, waveform,

h(⌧) ⌘ 1
⌫

Rc2

GM
hpostmerger

22 (⌧), (1)

where M ⌘ m1 + m2 is the total mass and R is the
distance of the source. The time ⌧ = (t � tM)/MBH

counts time in units of the mass of the final black hole,
MBH, and tM is the merger time. The QNM-rescaled

ringdown waveform h̄(⌧) of [3] h(⌧) is defined as h(⌧) ⌘
e��1⌧�i�0 h̄(⌧), where �1 ⌘ ↵1 + i!1 is the (dimension-
less, MBH-rescaled) complex frequency of the fundamen-
tal (positive frequency, !1 > 0) QNM of the final black
hole and �0 is the value of the phase at merger. The
(complex) function h̄(⌧) is then decomposed in ampli-
tude and phase as

h̄(⌧) ⌘ Ah̄ei�h̄(⌧). (2)

1 This might be more complicated for modes like the (3, 2) that
show features due to mode-mixings that are mostly gauge fea-
tures. One should explore whether the procedure discussed here
is easily applicable once the waveform is written in the appropri-
ate frame [13]

TABLE I: The ⌫-dependence of the coe�cients in Eq. (10).
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Reference [3] found that Ah̄ and �h̄ can be accurately
represented by the following general functional forms
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CÂmrg
22

= +0.742481 ⌫ +1.38748

A!mrg
22

= �0.285624 ⌫ +0.0903558

B!mrg
22

= �0.185274 ⌫ +0.12597

C!mrg
22

= +0.405274 ⌫ +0.258643

Reference [3] found that Ah̄ and �h̄ can be accurately
represented by the following general functional forms

Ah̄(⌧) = cA
1 tanh(cA

2 ⌧ + cA
3 ) + cA

4 , (3)

�h̄(⌧) = �c�
1 ln

 
1 + c�

3e�c�
2 ⌧ + c�

4e�2c�
2 ⌧

1 + c�
3 + c�

4

!
. (4)

As in Ref. [3], only three of the eight fitting coe�cients,
(cA

3 , c�
3 , c�

4 ), are independent and need to be fitted di-
rectly. The others can be expressed in terms of four other
physical quantities: (↵1, ↵21,�!, Âmrg
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22 )

cA
2 =

1
2
↵21, (5)

cA
4 = Âmrg
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FIG. 1: Straightforward evaluation of the performance of the
general postmerger template obtained from Eq. (10) and Ta-
ble I. The two waveforms are aligned just by imposing the the
phase di↵erence is zero at merger point. The corresponding
NR phases at merger are listed in Table III for completeness.

di↵erences may be relevant when the interpolating fit is
used to provide the post merger waveform in EOB mod-
els, as the one of Refs. [14] and more recently of Ref. [? ],
that is calibrated to a much larger set of NR SXS wave-
forms (part of which are now public) than those used
here. The precise assessment of the quality of the cur-
rent post merger model for EOB purposes is outside the
scope of this work and will be discussed in future stud-
ies. Note, however, that the quality of the primary fitting

and 3. Despite the availability of this new data, we have cho-
sen not to incorporate them in the construction of the template
in the current analysis, but only to use a few of them to vali-
date the interpolating template well outside its “calibration” do-
main. The new datasets used for this aim are: SXS:BBH:0257,
SXS:BBH:0211,SXS:BBH:0292,SXS:BBH:0293. The incorpora-
tion of, at least part of, this large amount of NR data in the
template construction, together with a few structural modifica-
tions outlined above, is expected to strongly improve its perfor-
mance and will be systematically pursued in future work.
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FIG. 2: Performance of the primary fit on dataset
SXS:BBH:0305. The thick red region in the top panel marks
the time interval where the fit is actually done. The phase dif-
ference at merger is consistent with the general interpolating
fit after time and phase alignment (green line in Fig. 3).

procedure for a single NR dataset is typically very good;
it is illustrated in Fig. 2, for the case of SXS:BBH:0305.
For this GW150914-like waveform, the phase and ampli-
tude (relative) di↵erences are of the order of 1%.

Since our final aim is to use the analytic post merger
waveform as an actual template for parameter estima-
tion, we have the arbitrarily of defining it modulo an
arbitrary time and phase shift. As a consequence, it
also makes sense to compare the analytical and numeri-
cal waveform by aligning them fixing these two arbitrary
constants. We use here the alignment procedure intro-
duced in Sec. VA of Ref. [21] and extensively used in sub-
sequent EOB works (see e.g. [14] and references therein).
The phase and time shift are is chosen so that the phase
di↵erence is minimized over a small frequency interval
after merger. We use an interval because, in general,
in this way the alignment procedure is more robust and
less a↵ected by numerical artifacts that may be present
in the numerical waveforms. The minimization interval
is chosen to be MBH[!L, !R] = MBH!mrg[1.05, 1.20] and
it always ends before the final phase dominated by the
fundamental mode is reached.

We report our findings in Fig. 3. The phase di↵erence
(top panel) averages zero, with the largest di↵erences of
⇠ 0.1 rads arising at the latest stages of the template,
where the NR waveform gets progressively dominated by
numerical oscillations (e.g., due to the radius extrapo-
lation procedure, see also discussion in [3]). The frac-

tional amplitude di↵erences (bottom panel) tend to be
5%  �A/A  15%, with similar increasing oscillations
as time progresses. Note that, for any of these config-
urations, the primary fit done with the template given
by Eq. (2) is extremely accurate, with phase di↵erences
of the order of the expected numerical uncertainties, i.e.
1⇥ 10�2 rads for the phase, and 1% for �A/A (see be-
low). This suggests that the largest source of uncertainty
is the interpolation procedure in the (⌫, ã1, ã2) space.
More NR simulations of asymmetric systems (⌫ 6= 1/4,

↵21 = ↵2 � ↵1
�! ⌘ !1 �MBH!mrg

22

• Extended to several modes 
• (2,2); (2,1); (3,3); (3,2); (4,4); (4,3); (5,5) 
• Usable as stand-alone ringdown template 
• Specific fits for peak quantities 
• NO mode-mixing (for the moment…) 

 
See poster 
of G. Riemenschneider
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Spinning BBHs
Spin-orbit & spin-spin couplings 
(i) Spins aligned with L: repulsive (slower)  L-o-n-g-e-r INSPIRAL 

(ii) Spins anti-aligned with L: attractive (faster) Shorter   INSPIRAL 

(iii) Misaligned spins: precession of the orbital plane (waveform modulation)
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Damour&AN, PRD90 (2014), 044018 (Ringdown) 
AN,Damour, Reisswig & Pollney, PRD 93 (2016), 044046 
AN, Riemenschneider & Platten, PRD2017 
AN, Bernuzzi, Del Pozzo et al., PRD98.104052 

EOB/NR agreement: sophisticated (though 
rather simple) model for spin-aligned binaries
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TEOBResumS: spin-aligned BBH

ã1,2 = X1,2�1,2

X1,2 ⌘
m1,2

M

• spin-orbit parameter informed by 30 BBH NR simulations  
• BEST faithfulness with all NR available (200 simulations) 
• Robust and simple 
• Tides and spin-induced moment included (BNS) 
• ONLY publicly available stand-alone EOB code

effective NNNLO spin-orbit “function”

Nagar, Bernuzzi, Del Pozzo et al., PRD98.104052 

ONLY 2 EOBNR models 
TEOBResumS 
SEOBNRv4 (AEI)

Hamiltonian comparison: 
see poster of F. Martinetti



TEOBResumS on GW150914
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FIG. 16. Reconstructed whitened GW waveforms in the Hanford (top panel) and in the Livingston (bottom panel) detectors.
The solid lines indicate the median recovered waveforms. The cyan bands indicate the 90% credible regions as recovered by
our analysis. As a comparison we also overlay the whitened raw strain for the two detectors.

from the authors on request. In Table IV we summarize
our results by reporting median and 90% credible inter-
vals. These numbers are to be compared with what re-
ported in Table I in Ref. [135] and Table I in Ref. [138].
We also list them in the last column of Table IV for
convenience. As examples, we show the whitened recon-
structed waveforms in Fig. 16 and the M and mass ratio
posterior distribution in Fig. 17. We find our posteri-
ors to be consistent with what published by the LIGO
and Virgo collaborations, albeit our inference tends to
prefer higher values for the mass parameters. However,
no statistically significant di↵erence is found. We find
that TEOBResumS is fit to perform parameter estimation
studies and that on GW150914 it performs as well as
mainstream waveform models.

VI. SELECTED COMPARISONS WITH
SEOBNRV4 AND SEOBNRV4T

To complement the above discussion, let us collect
in this section a few selected comparisons between
TEOBResumS and the only other existing state-of-the-art
NR-informed EOB models SEOBNRv4 and SEOBNRv4T [9,
39–41], that are currently being used on LIGO/Virgo
data. The tidal sector of the SEOBNRv4T model has been
recently improved so as to also include EOS-dependent
self-spin terms in the Hamiltonian, though in a form dif-
ferent from ours, and will be discussed in a forthcoming
publication. For the BBH case, our Fig. 1, when com-
pared with Fig. 2 of [9], points out the excellent compat-

ibility between the two models at the level of unfaithful-
ness with the SXS catalog of NR simulations, although
the information (or calibration) of the model was done
in rather di↵erent ways. For SEOBNRv4 it relies on mon-
itoring a likelihood function that combines together the
maximum EOB/NR faithfulness and the di↵erence be-
tween EOB and NR merger times (see Sec. IVB of [9]).
By contrast, the procedure of informing TEOBResumS via
NR simulations relies on monitoring the EOB/NR phase
di↵erences and choosing (with a tuning by hand that
can be performed in little time without the need of a
complicated computational infrastructure, as explained
in detail in [10]) values of parameters such that the ac-
cumulated phase di↵erence at merger is within the SXS
NR uncertainty obtained, as usual, by taking the phase
di↵erence between the two highest resolutions. This is
possible within TEOBResumS because of the smaller num-
ber of dynamical parameters, i.e. (ac

6, c3), and the rather
“rigid” structure that connects the peak of the (pure) or-
bital frequency with the NQC point and the beginning
of ringdown, Eq. (15).

Once this is done, and in particular once one has de-
termined a global fit for c3, the EOB/NR unfaithful-
ness is computed as an additional cross check between
waveforms. Here we want to make the point that, even
if the models look very compatible among themselves
from the phasing and F̄ point of view, they may actu-
ally hide di↵erent characteristics. As a concrete exam-
ple, we focus on the (e↵ective) photon potential function
A/r2, where A is the EOB central interaction potential.
In the test-particle (Schwarzschild) limit, A = 1 � 2/r
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FIG. 17. Two-dimensional posterior distribution for M
and MB/MA for GW150914 as inferred using cpnest and
TEOBResumS. The contours indicate the regions enclosing 90%,
75%, 50% and 25% of the probability.
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FIG. 18. Comparison between two flavors of the SEOBNRv*
model and TEOBResumS. The improved NR calibration in-
corporated in SEOBNRv4 [9, 39, 40] pushed it closer to the
TEOBResumS curve than the SEOBNRv2 one [139].

and A/r2 peaks at the light ring r = 3, which approx-
imately coincides with (i) the peak of the orbital fre-
quency; (ii) the peak of the Regge-Wheeler-Zerilli po-
tential; (iii) the peak of the ` = m = 2 waveform am-
plitude [63]. The location of the e↵ective light ring (or
the peak of the orbital frequency) is a crucial point in
the EOB formalism, since, as in the test-particle limit,
it marks the beginning of the postmerger waveform part
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FIG. 19. EOB e↵ective photon potential A(r)/r

2 for
SEOBNRv4 and TEOBResumS for mass ratios q = (1, 2, 3, 4, 6, 18).
The potentials are consistent, though di↵erent at the peak,
also for medium mass ratios. The highest consistency is found
for q = 18. The markers highlight the peaks of the functions,
i.e. the locations of the e↵ective light-rings
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FIG. 20. Dependence of the e↵ective light-ring position, rLR,
i.e. the peak of A(r)/r

2 in Fig. 19, versus ⌫. The behavior
of the TEOBResumS e↵ective light-ring tends quasi-linearly to
r = 3, while the structure of the corresponding SEOBNRv4
function is more complex.

eventually dominated by quasi-normal mode ringing. We
recall that TEOBResumS and SEOBNRv4 resum the A poten-
tial in di↵erent ways: it is a (1,5) Padé approximant for
TEOBResumS, while it is a more complicated function re-
summed by taking an overall logarithm for SEOBNRv4 [47].
Moreover, while TEOBResumS includes a 5PN-accurate
logarithmic term, SEOBNRv4 only relies on 4PN-accurate
analytic information. In addition, both functions are NR-
modified by a single, ⌫-parametrized function that is de-
termined through EOB/NR phasing comparison. This is
the 5PN e↵ective correction ac

6(⌫) mentioned above for
TEOBResumS and the function K0(⌫) for SEOBNRv4. Ex-
plicitly, we are using ac

6(⌫) = 3097.3⌫2 � 1330.6⌫ + 81.38
and K0 = +267.788247⌫3 �126.686734⌫2 +10.257281⌫ +
1.733598. As a first comparison, we plot in Fig. 18 the
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TABLE IV. Summary of the parameters that characterize
GW150914 as found by cpnest and using TEOBResumS as tem-
plate waveform, compared with the values found by the LVC
collaboration [135]. We report the median value as well as the
90% credible interval. For the magnitude of the dimension-
less spins |�A| and |�B | we also report the 90% upper bound.
Note that we use the notation �e↵ ⌘ â0 for the e↵ective spin,
as introduced in Eq. (8).

TEOBResumS LVC

Detector-frame total mass M/M� 73.6+5.7
�5.2 70.6+4.6

�4.5

Detector-frame chirp mass M/M� 31.8+2.6
�2.4 30.4+2.1

�1.9

Detector-frame remnant mass Mf/M� 70.0+5.0
�4.6 67.4+4.1

�4.0

Magnitude of remnant spin âf 0.71+0.05
�0.07 0.67+0.05

�0.07

Detector-frame primary mass MA/M� 40.2+5.1
�3.7 38.9+5.6

�4.3

Detector-frame secondary mass MB/M� 33.5+4.0
�5.5 31.6+4.2

�4.7

Mass ratio MB/MA 0.8+0.1
�0.2 0.82+0.20

�0.17

Orbital component of primary spin �A 0.2+0.6
�0.8 0.32+0.49

�0.29

Orbital component of secondary spin �B 0.0+0.9
�0.8 0.44+0.50

�0.40

E↵ective aligned spin �e↵ 0.1+0.1
�0.2 �0.07+0.16

�0.17

Magnitude of primary spin |�A|  0.7  0.69

Magnitude of secondary spin |�B |  0.9  0.89

Luminosity distance dL/Mpc 479+188
�235 410+160

�180

at M! ⇠ 0.04, eventually yields a contribution that is
comparable to the LO one in the PN series. For this
reason, we are prone to think that the EOB description
of self-spin e↵ects, even if it is based only on the (lim-
ited) LO self-spin term, is more robust and trustable than
the straightforward PN-expanded one. Clearly, to finally
settle this question we will need to incorporate in the
EOB formalism, through a suitable CQi-dependent ex-
pression of the �â2 given in Eq. (9), EOS-dependent self-
spin e↵ects at NLO. This will be discussed extensively in
a forthcoming study.

V. CASE STUDY: PARAMETER ESTIMATION
OF GW150914

We test the performance and faithfulness of our wave-
form model in a realistic setting by performing a param-
eter estimation study on the 4096 seconds of publicly
available data for GW150914 [136]. To do so e�ciently,
we do not iterate on the NQC parameters, so that the
generation time of each waveform from 20 Hz is ⇠ 40 ms
using the C++ version of TEOBResumS discussed in Ap-
pendix E. This worsens a bit the SXS/TEOBResumS un-
faithfulness, as we illustrate in Fig. 15, though the model
is still compatible with the max F̄ ⇡ 1% limit and be-
low the 3% threshold. The largest value of F̄ is in fact
max F̄ ⇡ 0.018, that is obtained for (1, +0.40, +0.80).
We define ✓ as the vector of physical parameters neces-
sary to fully characterize the gravitational wave signal.
For TEOBResumS and binary black hole systems, these
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10 0

FIG. 15. Unfaithfulness comparison between TEOBResumS
and SXS waveforms obtained without iterating on the am-
plitude NQC parameters (a1, a2), see Eq. (14). The per-
formace of the model, where the parameters (ac

6, c3) were
NR-tuned with the iterative determination of (a1, a2) (see
Sec. II A), is slightly worsened with respect to Fig. 1, although
it is still compatible with the 1% limit. Such simplified ver-
sion of TEOBResumS is used for the parameter estimation of
GW150914, with results reported in Table IV.

are the component masses (MA, MB), their dimension-
less spin components (�A, �B) along the direction of the
orbital angular momentum, the three-dimensional coor-
dinates in the Universe – sky position angles and lumi-
nosity distance –, polarization and inclination angles, and
finally time and phase of arrival at the LIGO sites. We
operate within the context of Bayesian inference; given
k time series of k detectors’ data d, we construct the
posterior distribution over the parameters ✓ as

p(✓|d1, . . . , dk, H, I) = p(✓|H, I)
p(d1, . . . , dk|✓, H, I)

p(d1, . . . , dk|H, I)
(56)

where we defined our gravitational wave model –
TEOBResumS – as H and I represents all “background”
information which is relevant for the inference problem16.
For our choice of prior distribution p(✓|H, I), we refer the
reader to Ref. [135]. Finally, we choose the likelihood
p(d1, . . . , dk|✓, H, I) to be the product of k wide sense
stationary Gaussian noise distributions characterised en-
tirely by their power spectral density, which is estimated
using the procedure outlined in Ref. [136]. We sample
the posterior distribution for the physical parameters of
GW150914 using the Python parallel nested sampling al-
gorithm in [137]. The cpnest model we wrote is available

16 For instance, the assumption of stationary Gaussian detector
noise is hidden in the definition of I.

Nagar, Bernuzzi, Del Pozzo et al., PRD98.104052 
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Neutron stars: tides & spin
TEOBResumS today [AN+, PRD98, 2018,104052] 

•  tidal effects + nonlinear-in-spin-effects (S2, S3,S4,…) [AN+, PRD99, 2019,044007] 
• analytically very complete model (almost final) 
• l=3 GSF-informed + gravitomagnetic tides [Akcay+, PRD, 2019, in press] 
• checked with (state-of-the-art but short) NR simulations up to merger 
• EFFICIENT due to the post-adiabatic approximation  [AN & Rettegno PRD99, 2019 021501] 
• no precession (yet!)

No real need of EOB-surrogate!
see poster of P. Rettegno



TEOBResumS vs NR: BNS
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TABLE III. Equal-mass BNS configurations considered in this work. From left to right the column reports: the EOS, the
gravitational mass of each star, the compactness, the quadrupolar dimensionless Love numbers, the leading-order tidal coupling
constant 

T
2 , the corresponding value of the quadrupolar “tidal deformability” for each object, ⇤A,B

2 , Eq. (22), the dimensionless
spin magnitude and the spin-induced quadrupole momenta CQA,QB .

name EOS MA,B [M�] CA,B k

A,B
2 

T
2 ⇤A,B

2 �A,B CQA,QB

BAM:0095 SLy 1.35 0.17 0.093 73.51 392 0.0 5.491

BAM:0039 H4 1.37 0.149 0.114 191.34 1020.5 0.141 7.396

BAM:0064 MS1b 1.35 0.142 0.134 289.67 1545 0.0 8.396

FIG. 12. Phasing comparison between BAM and TEOBResumS waveforms for the SLy and Ms1b equal-mass BNS configurations of
Table III. The EOB and NR waveforms, once aligned during during the early inspiral (approximately over the first 1500M of
evolution), are compatible, within the NR uncertainty (gray area in the figures) essentially up to the NR merger point, defined
as the peak of the waveform amplitude |h22|. Note however that the errors are larger for the MS1b configuration. The time
marked by the vertical green line corresponds to 700Hz.

considered as well as for spins. Interestingly, the leftmost
panel of Fig. 12 also shows that the EOB-NR phase dif-
ference towards merger is acceptably small (< 1 rad), but
also significantly larger than the NR uncertainty. This il-
lustrates that, for the first time, our NR simulations are
finally mature to inform the analytical model with some
new, genuinely strong-field, information that can be ex-
tracted from them. The figures show that for the EOB
dynamics, we typically underestimate the e↵ect of tides
in the last orbit, since the phase of the NR data is evolv-
ing faster (stronger tides). However, the opposite is true
for BAM:0095. This result is consistent with the ones of
Ref. [32] for the same physical configuration (but di↵er-
ent simulations, leftmost panel of Fig. 3) where one had
already the indication that for compact NS, tidal e↵ects
could be slightly overestimated with respect to the cor-
responding NR description. Informing TEOBResumS with
the BAM simulations is outside the scope of the current
work. However, we want to stress that this is finally pos-
sible with our improved simulations.

IV. CONTRIBUTION OF SELF-SPIN TERMS
TO BNS INSPIRAL

Now that we could show the consistency between the
TEOBResumS phasing and state-of-the art NR simulations,
let us investigate in more detail the e↵ect of spins on long
BNS waveforms as predicted by our model. First of all,
let us recall that inspiralling BNS systems are not likely
to have significant spins. The fastest NS in a confirmed
BNS system has dimensionless spins ⇠ 0.04 [121]. An-
other potential BNS system has a NS with spin frequency
of 239 Hz, corresponding to dimensionless spin 0.2. The
fastest-spinning, isolated, millisecond pulsar observed so
far has � = 0.04. However, it is known that even a
spin of 0.03 can lead to systematic biases in the esti-
mated tidal parameters if not incorporated in the wave-
form model [122, 123]. Those analysis are based on PN
waveform models. A precise assessment of these biases
using TEOBResumS is beyond the scope of the present
work and will hopefully be addressed in the future. Since
the most important theoretical novelty of TEOBResumS is
the incorporation of self-spin e↵ects in resummed form,
our aim here is to estimate their e↵ect in terms of time-
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FIG. 13. Phasing comparison between BAM and TEOBResumS
waveforms, e↵ect of spin (H4 EOS, see Table III). The figure
refers to spinning binary with dimensionless spins �A = �B ⇡
0.14. NR and EOB waveforms are still compatible, within
the NR uncertainty (gray area in the figures), up to the NR
merger point. The time marked by the vertical green line
corresponds to 700Hz.

domain phasing up to merger 14, notably contrasting the
TEOBResumS description with the standard PN one.

Before doing so, let us mention that LO, PN-expanded,
self-spin terms [35] in the TaylorF2 [125, 126] inspiral ap-
proximant have been used in parameter-estimation stud-
ies by Agathos et al. [93], and, more recently, by Harry
and Hinderer [110]. The LO term (2PN accurate) to
the frequency-domain phasing was originally computed
by Poisson [35]. Currently, EOS-dependent, self-spin in-
formation is computed in PN theory up to 3.5PN order,
so that one can have the corresponding 3.5PN accurate
terms in the TaylorF2 approximant. Let us explicitly re-
view their computation. Given the Fourier transform of
the quadrupolar waveform as

h̃22 ⌘ Ã(f)e�i (f), (42)

the frequency domain phasing of the TaylorF2 waveform
approximant, that assumes the stationary phase approxi-
mation, is obtained solving the integral given by Eq. (3.5)
of Ref. [125],

 f (tf ) = 2⇡ftref ��ref +2

Z vref

vf

(v3
f �v3)

E0(v)

F(v)
dv, (43)

where the parameters tref and �ref are gauge-dependent
integration constants. The CQi-dependent quadratic-in-
spin energy and flux available in the literature at 3.5PN,

14 Note that it is currently not possible to reliably extract self-spin
information from numerical simulations [116, 124].

the maximum PN order actually known in this particu-
lar case, are given in Refs. [127] and [105] respectively,
where their notation ± corresponds to + = CQA+CQB

and � ⌘ CQA � CQB . It is important to stress that in
Ref. [102] a circularized spin-spin CQi-dependent Hamil-
tonian, equivalent to the Multipolar post-Minkowskian
(MPM) result of Ref. [127] (see their Appendix D), was
computed via e↵ective field theory (EFT) techniques.
From Eq. (43), by taking into account all the orbital
pieces at the consistent PN order [43, 45, 128–130], one
gets that the self-spin contribution is given by the sum of
an LO term (2PN) [35], an NLO term (3PN) and a LO
tail15 term (3.5PN)

 PN
SS =  PN,LO

SS + PN,NLO
SS + PN,tail

SS . (44)

The LO tail term is computed here for the first time.
It was obtained by expanding, at the corresponding PN
order, the EOB energy and flux adapting the procedure
discussed in [133]. These three terms explicitly read

 PN,LO
SS = � 75

64⌫

�

ã2
ACQA + ã2

BCQB

�

⇣!

2

⌘�1/3
, (45)

 PN,NLO
SS =

1

⌫

✓

45

16
⌫ +

15635

896

◆

(CQAã2
A + CQB ã2

B)

+
2215

512
XAB(CQAã2

A � CQB ã2
B)

�

⇣!

2

⌘1/3
,

(46)

 PN,tail
SS = �75

8⌫
⇡
�

ã2
ACQA + ã2

BCQB

�

⇣!

2

⌘2/3
, (47)

where ! = 2⇡Mf denotes the circularized quadrupolar
gravitational wave frequency.

To quantitatively investigate the di↵erences between
the PN-expanded and EOB-resummed treatment of the
self-spin contribution to the phase, it is convenient to
use the quantity Q! = !2/!̇, where ! = !(t) is the
time-domain quadrupolar gravitational wave frequency,
! ⌘ d�/dt, where �(t) ⌘ �22(t) is the phase of the time-
domain quadrupolar GW waveform h22(t) = A(t)ei�22(t).
This function has several properties that will be useful in
the present context. First, its inverse can be considered
as an adiabatic parameter ✏adiab = 1/Q! = !̇/!2 whose
magnitude controls the validity of the stationary phase
approximation (SPA) that is normally used to compute
the frequency-domain phasing of PN approximants dur-
ing the quasi-adiabatic inspiral. Thus, the magnitude of
Q! itself tells us to which extent the SPA delivers a re-
liable approximation to the exact Fourier transform of
the complete inspiral waveform, that also incorporates
nonadiabatic e↵ects. Let us recall [98] that, as long as
the SPA holds, the phase of the Fourier transform of
the time-domain quadrupolar waveform  (f) is simply

15 See Refs. [131] and [132] for a physical insight to memory and
tail e↵ects in gravitational radiation.



• Only existing EOB model independent from existing waveform models in LIGO/Virgo 

•  PE of the binary neutron star GW170817: arXiv:1811.12907 (GWTC-1)

Masses

Tidal polarizability 
(EOS)
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FIG. 4. Parameter estimation summary plots I. Posterior probability densities of the masses, spins, and SNR of the GW events. For the
two-dimensional distributions, the contours show 90% credible regions. Left panel: Source frame component masses m1 and m2. We use the
convention that m1 � m2, which produces the sharp cut in the two-dimensional distribution. Lines of constant mass ratio q = m2/m1 are shown
for 1/q = 2, 4, 8. For low-mass events, the contours follow lines of constant chirp mass. Right panel: The mass Mf and dimensionless spin
magnitude af of the final black holes. The colored event labels are ordered by source frame chirp mass. The same color code and ordering
(where appropriate) apply to Figs. 5 to 8.

where M = m1 + m2 is the total mass of the binary, and m1 is
defined to be the mass of the larger component of the binary,
such that m1 � m2. Di↵erent parameterizations of spin e↵ects
are possible and can be motivated from their appearance in
the GW phase or dynamics [121–123]. �e↵ is approximately
conserved throughout the inspiral [120]. To assess whether a
binary is precessing we use a single e↵ective precession spin
parameter �p [124] (see Appendix C).

During the inspiral the phase evolution depends at leading
order on the chirp mass [34, 125, 126],

M = (m1m2)3/5

M1/5 , (5)

which is also the best measured parameter for low mass sys-
tems dominated by the inspiral [100, 121, 127, 128]. The mass
ratio

q =
m2

m1
 1 (6)

and e↵ective aligned spin �e↵ appear in the phasing at higher
orders [100, 120, 122].

For precessing binaries the orbital angular momentum vec-
tor ~L is not a stable direction, and it is preferable to describe
the source inclination by the angle ✓JN between the total an-
gular momentum ~J (which typically is approximately constant
throughout the inspiral) and the line of sight vector ~N instead
of the orbital inclination angle ◆ between ~L and ~N [118, 129].
We quote frequency-dependent quantities such as spin vec-
tors and derived quantities as �p at a GW reference frequency
fref = 20Hz.

Binary neutron stars have additional degrees of freedom re-
lated to their response to a tidal field. The dominant quadrupo-
lar (` = 2) tidal deformation is described by the dimensionless
tidal deformability ⇤ = (2/3)k2

h
(c2/G)(R/m)

i5
of each neu-

tron star (NS), where k2 is the dimensionless ` = 2 Love num-
ber and R is the NS radius. The tidal deformabilities depend
on the NS mass m and the equation of state (EOS). The domi-
nant tidal contribution to the GW phase evolution is encapsu-
lated in an e↵ective tidal deformability parameter [130, 131]

⇤̃ =
16
13

(m1 + 12m2)m4
1⇤1 + (m2 + 12m1)m4

2⇤2

M5 . (7)

B. Masses

In the left panel of Fig. 4 we show the inferred component
masses of the binaries in the source frame as contours in the
m1-m2 plane. Because of the mass prior, we consider only sys-
tems with m1 � m2 and exclude the shaded region. The com-
ponent masses of the detected BH binaries cover a wide range
from ⇠ 5M� to ⇠ 70M� and lie within the range expected for
stellar-mass BHs [132–134]. The posterior distribution of the
heavier component in the heaviest BBH, GW170729, grazes
the lower boundary of the possible mass gap expected from
pulsational pair instability and pair instability supernovae at
⇠ 60 � 120M� [135–137]. The lowest-mass BBH systems,
GW151226 and GW170608, have 90% credible lower bounds
on m2 of 5.6 M� and 5.9 M�, respectively, and therefore lie

GW170817- Parameter Estimation (LVC)

see also poster of R. Gamba 
on the impact of crust modelization 
arXiv:1902.04616



Tides (for GW170817)
TEOBResumS: GSF-improved tides 
SEOBNRv4T: “dynamical” tides (f-mode coupling)[Hinderer+,2016] 
Spin-orbit & self-spin effects (EOS-dependent)

Excellent compatibility  
between the two models



Higher modes
Improved resummation of waveform amplitudes [Messina+ 2018]

NR completion merger-bringdown: (2,2), (3,3),(3,2),(4,4),(4,3),(5,5)

see posters of F. Messina-G. Riemenschneider
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FIG. 9. Unfaithfulness between the TEOBiResumMultipoles model and SXS:0303, a binary of mass ratio q = 10, assuming a total mass
of M = 100M� using the Advanced LIGO and Virgo design sensitivity PSD (zerodethp). The left plot shows the unfaithfulness between
EOB and NR using the modes: {(22), (21), (33), (44), (43)}. The right plot shows the degredation in the unfaithfulness from using just the
dominant 22-mode in the model. As expected, the unfaithfulness degrades as we approach edge-on systems where the relative contribution of
higher modes becomes more pronounced.
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FIG. 10. Unfaithfulness between TEOBiResumMultipoles
and SXS simulations between mass ratios q 2 {1, 10} using the
zero-detuned high power Advanced LIGO design sensitivity PSD.
We show the minimum and maximum unfaithfulness over all angles
(✓, '), demonstrating that the worst case performance is always be-
low 3% for binaries with a total mass M < 200M�.

to properly determine the NQC correction factor mul-
tipole by multipole. This looks to be the crucial piece
of information to be added to the purely analytical de-
scription of each waveform multipole to properly repre-

sent its very latest part (about 50M ) just before its own
peak. We think it is remarkable that such a straightfor-
ward procedure is so efficient in improving, multipole
by multipole, the circularized EOB waveform. Notably,
this is the case also for the m = 1 mode, where the im-
pact of the radial-momentum dependent terms is large.
Note however this procedure works only in concert with
the structure of the Newtonian prefactor, where one can
relax at will the circularized Kepler’s constraint during
the plunge to ease the action of the NQC factor. Glob-
ally, our euristic findings seem to suggests that the ana-
lytical waveform could benefit of the explicit inclusion
of noncircular terms [? ], possibly in some resummed
form. This might be helpful to reduce the need of NR-
tuned NQC corrections.

(iv) To gauge some of the analytical uncertainty related to
the choices made in constructing a NR-informed EOB
model, we have contrasted the effect of two different
choices of radiation reaction, that imply two differ-
ent, and independent, determinations of ac

6 obtained by
EOB/NR phasing comparison.

(v) We have done an extensive investigation of the
EOB/NR unfaithfulness varying both the mass ratio and
the direction of propagation of the waveform.

Nonspinning+(3,1),(4,2),(4,1)
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Use of TEOBResumS
• Use as a benchmark for testing the accuracy of phenomenological 

tidal models, e.g IMRPhenomP_NRTidal [Dietrich et al. 2018] 

• Used to test high-PN (5.5PN) approximants and to identify biases 
    in tidal parameters due to the inaccurate point-mass baseline. 
    [Dudi,Messina, Nagar & Bernuzzi in prep.] 
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• C version stand-alone: complete and working. Dimensionless units. Including both the 
PA implementation and the NQC iteration. 

• BBH (merger+ringdown), BNS & BHNS (up to merger)

What exists

What is in progress/to be released
• BBH sector: Higher modes: (2,1),(3,3),(3,2),(4,4),(4,3),(5,5): completed with NR-informed peak 

and postpeak part. The others are “bare” (but still have a peak). Even more modes available for 
the non spinning case, e.g. (3,1), (4,1), (4,2). 

• BNS sector: improved with more EOS-dependent information and higher modes available. l=3 
GSF-resummed tidal potential; included up to NNLO self-spin effects. Not negligible also for 
small spins. Current approximates underestimate these effects. EOB-controlled PN 
approximant to improve current PhenomPv2NRTidal model [AN+, PRD99, 2019,044007] 

• LAL (LVC) version of the model in progress and will be released soon.

git clone https://alex_nagar@bitbucket.org/eob_ihes/teobresums.git

Conclusions

https://alex_nagar@bitbucket.org/eob_ihes/teobresums.git

