Status of the squeezing for Advanced Virgo and EPR project

Martina De Laurentis

On behalf Virgo Collaboration

Università degli studi di Napoli 'Federico II' INFN- Napoli

NEWS General Meeting – Pisa - 14th March 2018

Summary

- Squeezed states of light
- Generation of SL
- Squeezed light in IGWD

(Interferometric Gravitational Wave Detectors)

- Status of AdV squeezing
- EPR squeezing in IGWD

Squeezed State of Light

Squeezed State of Light

Minimum Uncertainty States $\Delta X_1 \Delta X_2 = 1$

A bright beam (α >0) has the same fluctuation of the vacuum

Light as 'sensitive' element

its intrinsic quantum fluctuations Determines the final sensitivity

We cannot violate the uncertainty principle but we can squeeze the quantum fluctuations on one quadrature and 'use' that quadrature as sensitive element

Squeezed States

Squeezed State of Light

Coherent State

 X_2 quadrature

 $X_{i}(t)$

Phase Squeezed State

Amplitude Squeezed State

 X_1 quadrature

(c)

5

Generation of Squeezed Light

Martina De Laurentis - Alessandria - September - 18th- 2014

Generation of Squeezed Light

dx

Squeezed states — puadrature fluctuations correlated

Correlation between

the phase and amplitude quadrature of the output state

Martina De Laurentis - Pisa - 14th March 2018

dx

a

b

Squeezing for GWD

Noise Reduction

Vacuum Squeezed in the unused port

(sensitivity improvement)

Typical Squeezer Set-Up for GW interferometer

10

First Experimental Sensitivity Enhancement

• GEO600

broadband noise reduction of up to 3.5 dB (red trace) in the shot-noise-limited frequency band.

Losses 10 dB produced, 3.5 dB injected

LIGO Scientific Collaboration et al. "A gravitational wave observatory operating beyond the quantum shot-noise limit". In: Nature Physics 7.12 (2011), pp. 962–965.

LIGO H1 detector

up to 2.15 dB in the shot-noise-limited frequency band

Losses

10.3 dB produced, 2.15 dB injected

J Aasi et al.

"Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light". In: Nature Photonics 7.8 (2013), pp. 613–619.

11

AdV Expected sensitivity with Vacuum Phase Squeezed Injection

Low Power: 13 watt

Vacuum Phase Squeezed injection

High Power

Martina De Laurentis - Pisa - 14th March 2018

The AEI squeezer for AdVirgo

Resp: Hanning Vahlbruch (AEI)

Up to 12 dB of squeezing degree demonstrated in the audio band

The AEI squeezer for AdVirgo

Resp: Hanning Vahlbruch (AEI)

Status •

- The squeezer completed and operating in Hannover
 - Jannuary 2018: delivered and installed in Cascina
 - Febrary 2018: AdV PLL installed, Matching telescope installed

Installation layout

Infrastructures status

Virgo Detection Lab

Injection and matching telescope

Resp: Martina De Laurentis (INFN)

Martina De Laurentis - Pisa - 14th March 2018

AdV squeezer

Planning June-July 2018: commissioning

Vacuum Squeezed Injection in AdV for O3

Optimize the squeezing

A frequency dependent squeezing is needed:

an optimized squeezing angle in each region of the detector band

Rotation of the squeezing ellipse dependent on the frequency

Optimize the squeezing

Frequency Dependent Squeezing

A detuned cavity (Filter Cavity) acts as filter that in its band (cavity linewidth) rotates the field quadratures, thus the squeezing ellipse

According with the cavity detuning (resonant frequency equal to the carrier of GW interferometer laser frequency) the sidebans experience a different phase and quadratures rotation

The squeezing angle can be suitable tuned in the detector band with a suitable choice of the cavity bandwidth and detuning

Narrow linewidth cavity are required (kHz) For AdV Length~300 m and Finesse~500÷800 Cavity design very similar to the TAMA FC SEE Matteo Barsuglai talk

FDS conceptual design (04)

Target:

7-8 dB reduction of quantum noise at high frequency without degrading the low frequency sens.

The conceptual design including a preliminary costs list and a timeline should be ready by the end of the current Year

ARTICLES	nature physics
PUBLISHED ONLINE: 15 MAY 2017 DOI: 10.1038/NPHYS4118	

Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement

Yiqiu Ma^{1*}, Haixing Miao², Belinda Heyun Pang¹, Matthew Evans³, Chunnong Zhao⁴, Jan Harms^{5,6}, Roman Schnabel⁷ and Yanbei Chen¹

In this paper, they propose a **novel strategy to achieve broadband** squeezing of the total quantum noise via the preparation of EPR entanglement and the *dual use of the interferometer as both the* gravitational-wave detector and the filter, eliminating the need for external filter cavities

ADVANTAGES:

- no change in infrastructures

- suffers less from loss in the filter cavity compared to the design based on an auxiliary filter cavity (arm cavities have less loss) DISADAVANTAGES:

- higher level of input and detection losses

(doubled, because signal and idler beams experience the same amount of loss during propagation)

ADVANTAGES:

no change in infrastructures
suffers less from loss in the filter cavity compared to the design based on an auxiliary filter cavity (arm cavities have less loss)
it work with SR configuration

(in the case of FC two are needed)

DISADAVANTAGES:

- higher level of input and detection losses

(doubled, because signal and idler beams experience the same amount of loss during propagation)

Very low losses injection and detection systems

Squeezing in AdV Virgo

Actually Virgo has a group supported by INFN that is working on the development of the EPR project

Very low losses injection and detection systems

Scatteering, absorption

Matching losses

DESIGN VERY CLEAN and ``LIGHT"

BEFORE ALL: number of optics minimization

Twin cavities with collimated output

Martina De Laurentis - Pisa - 14th March 2018

Thank you!