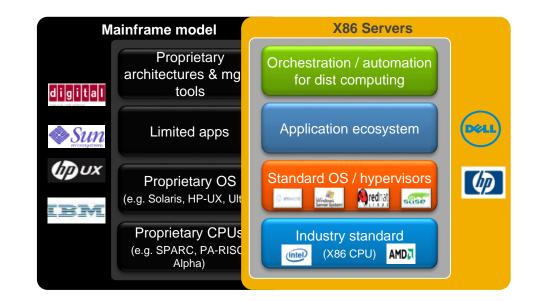


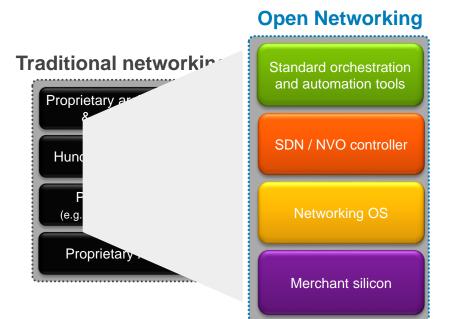
Microsoft

Windows Server: Power your business


What's happening in the Networking Landscape?

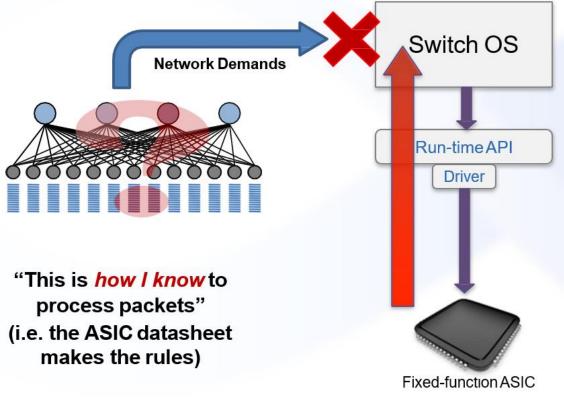
An overview on contemporary merchant switching silicon and SDN landscape

Paolo Bianco GCN Systems Engineer


paolo bianco@dell.com

25 years ago: Compute paradigm shift

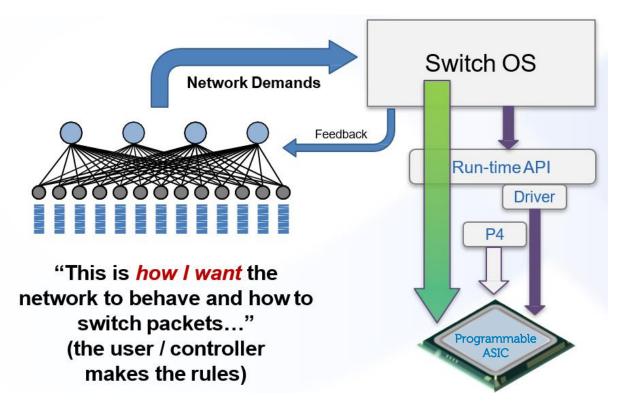
Now: Networking paradigm shift



Microsoft

Windows Server: Power your business

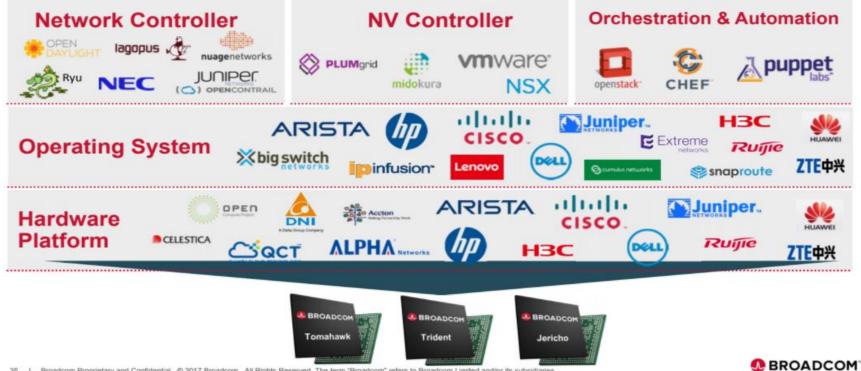
Contemporary Merchant Silicon Landscape


Traditional Approach: Bottom-Up network design

New Approach: Top-Down network design

The Programmable Switching Silicon Landscape

- One big Player: Broadcom
 - 95% of market share in 2015
 - Broader Ecosystem
 - First with fastest Programmable Switch Silicon (12.8TB/s)
- Some Emerging Contenders
 - Cavium
 - First with 25GbE
 - > XPA programmable architecture on all DC chipset
 - Barefoot
 - > Innovative approach
 - > PISAprogrammable architecture
 - HW+SW «Weapon System» with P4
 - Innovium
 - Very New company
 - Now Sampling 12.8TB/s Teralynx chipset
 - > Innoflex programmable architecture



Broadcom Ecosystem

Broadcom Proprietary and Confidential. @ 2017 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Limited and/or its subsidiaries. 25

Broadcom Offering

RoboSwitch[™]

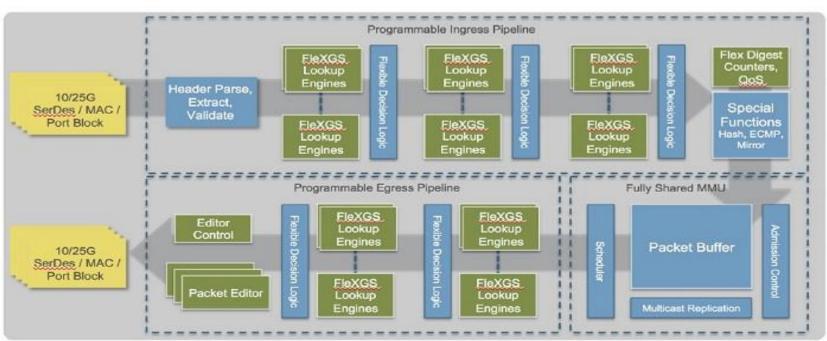
Broadcom's RoboSwitch solutions are highly integrated, cost effective, and smart-managed based on a field-proven, industry-leading architecture.

StrataConnect®

StrataConnect switches support 1 Gigabit, 2.5 Gigabit, 5 Gigabit, 10 Gigabit, and 25 Gigabit I/O speeds covering switch bandwidths from tens of gigabits to hundreds of gigabits.

StrataDNX™

The StrataDNX product line offers the greatest extensibility and scalability of any merchant silicon switch in the industry, with the ability to scale both tables and buffering with external TCAMs or DRAMs.


StrataXGS®

The StrataXGS product line offers the most highly integrated, highest-bandwidth switching solutions available in the market.

Trident 3 chipset Architecture

Cavium - XPliant

Scales up to 3.2Tbps

Family of products from 880Gps

25G Ethernet Consortium support

25G / 50G specification

XPA architecture

- Flexible and Agile
- Customized protocol implementation

Complete Protocol Feature Set

- L2, L3 Bridging / Routing
- Tunnels and overlays
- Standard API support
- Management CPU Support
 - Host: OCTEON, x86 or PowerPC via PCIe & 10G connection
 - Internal Service CPU

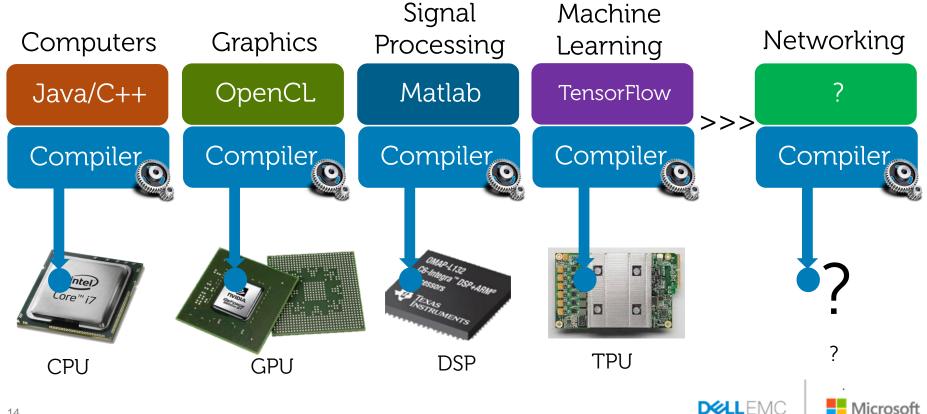
Host CPU Configurable Counters / Analytics Lookup interface Tables & **XPA** Pipeline TCAM Parse Service CPU Multicast Rewrite Engine Rx Ethernet SERDES MACs Traffic Manager Ethernet Tx SERDES MACs Packet Buffers TX DMA Rx DMA

All blocks in blue are configurable using XPA profiles

Flexible Port Configuration 32 x 100GE Ports 64 x 50GE Ports 64 x 40GE Ports 128 x 25GE Ports 128 x 10GE Ports

Broadcom Vs XPliant

Chipset	TCAM	L2, L3 tables	
Cavium / <mark>Xpliant</mark>	Up to 2,000,000		
Broadcom Tomahawk	Up to 256,000		
Apollo 2, Helix 4, Firebolt 3, Triumph 2, Trident+, Trident 2	1,000 to 2,000 I	~10,000s	


Innovium Teralynx

Innovium

Domain Specific «Weapon Systems»

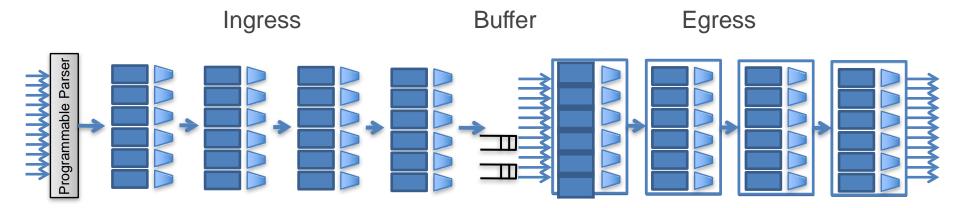
P4.org – P4 Language Consortium

<u>F</u> ile <u>M</u> odi	fica <u>V</u> isualizza <u>C</u> ronologia S <u>e</u> gnalibri <u>S</u> trumenti <u>A</u> iuto	- 0	\times
P4	× +		
$(\leftarrow) \rightarrow$	C 🟠 (i) 🔺 https://p4.org	··· 🛡 🚖 🔟 🖾 😣	• =
P4 . L	anguage Consortium	BLOG EVENTS SPECIFICATIONS CODE COMMUNITY	-
	And the second se		
	Language Design Working Group	Architecture Working Group	
	 Mailing list: Sign up, Archive GitHub: https://github.com/p4lang/p4-spec/ Co-Chairs: Nate Foster (Cornell) Gordon Brebner (Xilinx) 	 Mailing list: Sign up, Archive GitHub: https://github.com/p4lang/p4-spec/tree/master/p4-16/psa Co-Chairs: Calin Cascaval (Barefoot) Andy Fingerhut (Cisco) 	
	API Working Group	Applications Working Group	
	 Mailing list: Sign up, Archive GitHub: https://github.com/p4lang/Pl Co-chairs: Antonin Bas (Barefoot) 	 Mailing list: Sign up, Archive GitHub: https://github.com/p4lang/p4-applications Co-Chairs: Mukesh Hira (VMware) 	

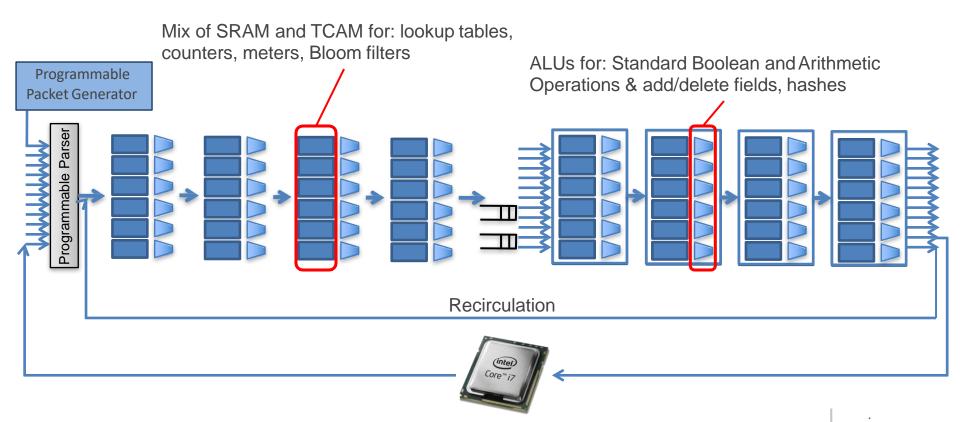
Lorenzo Vicisano (Google)

JK Lee (Barefoot)

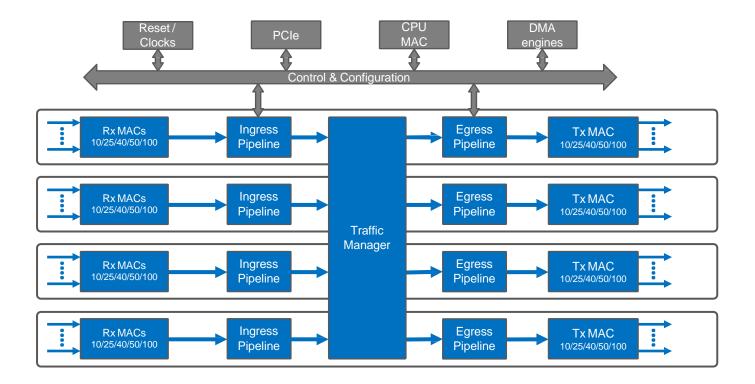
Barefoot Tofino



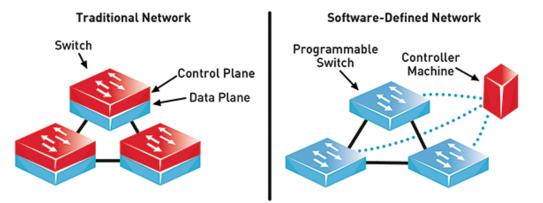
SRAM Memory 6.5Tbps single chip Ethernet switch Programmable Compiler Target All features operate at line rate TCAM Table Memory Port Configurations 65 x 100GE/40GE, 130 x 50GE 130 x 40GE (w/gearbox), 260 x 25GE/10GE Match-Action Engine SerDes 25G with Integrated FEC Packet Buffer **CPU Interfaces** PCle: Gen3 x4/x2/x1 4x 25G CPU Programmable Pipeline (Embodiment of PISA) 256x 25G SerDes SerDes PCle Create your own forwarding pipeline in P4 OR Use pre-built switch.p4 program 64 x 100GE/40GE, 1x100GE 40GE or Gen3 x4/x2/x1 128 x 50G/40GE, 2x40GE* | 50GE or 256 x 25GE/10GE 4x1 2.5 10 25GE


16

PISA: Protocol Independent Switch Architecture

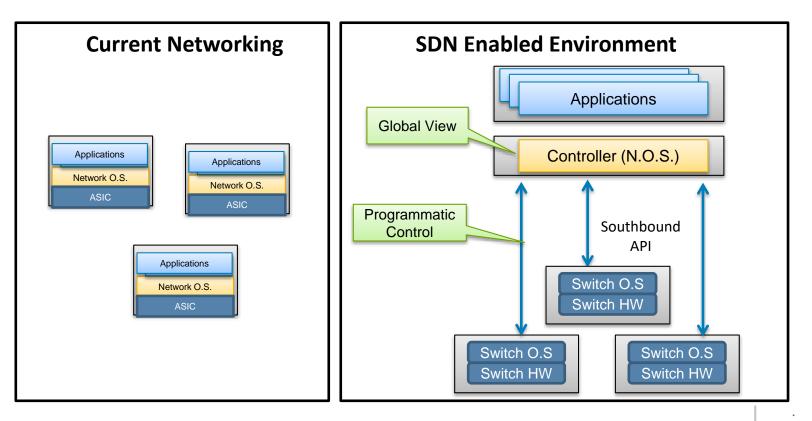

PISA: Protocol Independent Switch Architecture

Tofino Block Diagram


DELLEMC

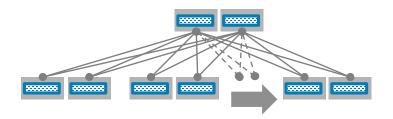
SDN for Merchant Silicon Landscape

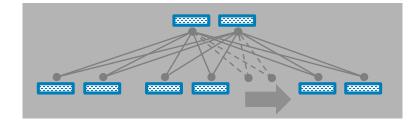
What is Software Defined Networking?


- A software-defined networking (SDN) architecture defines how a networking and computing system can be built using a combination of **open**, software-based technologies and commodity networking hardware that separate the control layer and the data layer of the networking stack.
- **Open** Networking is the foundation for SDN (but is not SDN!)
- In the SDN architecture, the splitting of the control and data forwarding functions is referred to as "**disaggregation**" because these pieces can be sourced separately, rather than deployed as one integrated system.

In turns: SDN focuses on network stack disaggregation

Implications of SDN

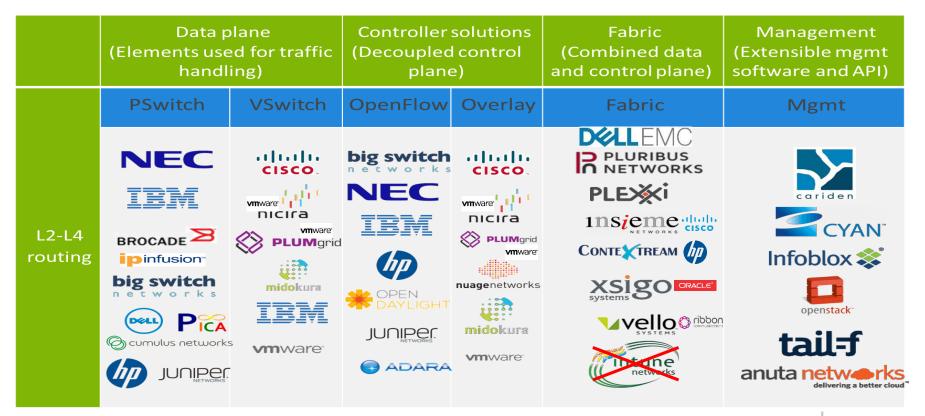




From Network of boxes to Networked fabric

Traditional Approach "Network of boxes"

Modern Approach "Networked fabric"


- Deployment
 - Configuration prone to error
 - Time consuming configuration
 - Complex topology validation
- Management
 - Box by box visibility
 - Device level troubleshooting

Deployed, managed, optimized, and automated as a single entity

Contemporary SDN Ecosystem (not necessarily complete!)

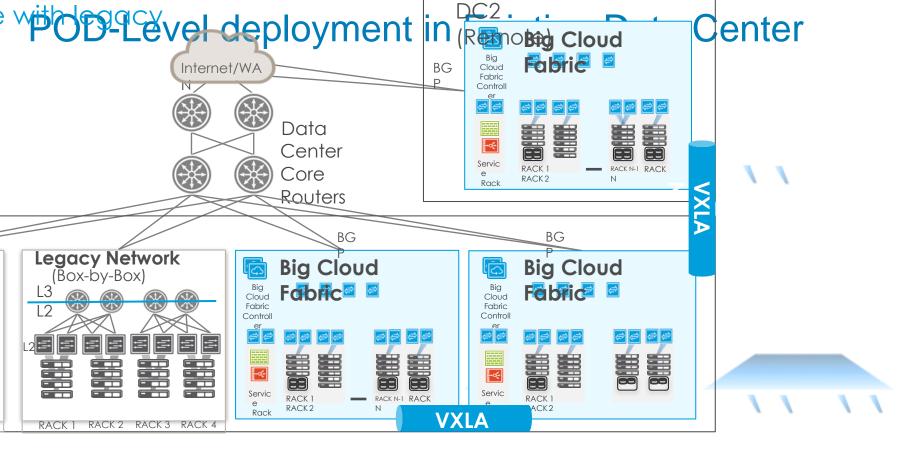
Big Switch Networks Portfolio

Big Switch Networks	The Next-Generation Data Center Networking Company			
Company Mission	Next-Generation DC switching	Next-Generation DC security and monitoring		
Products/ Solutions	Big Cloud FabricVMware SDDC (vSphere, NSX, vSAN)OpenStack (NFV/Private Cloud)Containers (Docker, Kub, Mesos, RH)	Big Monitoring FabricPervasive VisibilityDMZ SecurityCloud Monitoring		
Networking Architecture (Hyperscale Inspired)	Google facebook. Microsoft SDN Controller Software Hardware	Scale-out Fabric Architecture		

Big Cloud Fabric Maximum Deployment

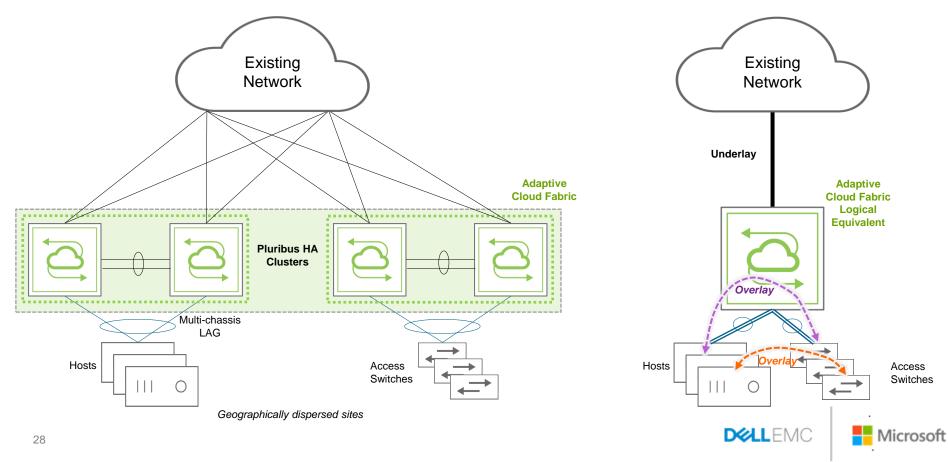
Maximum deployment for a single BCF Pod

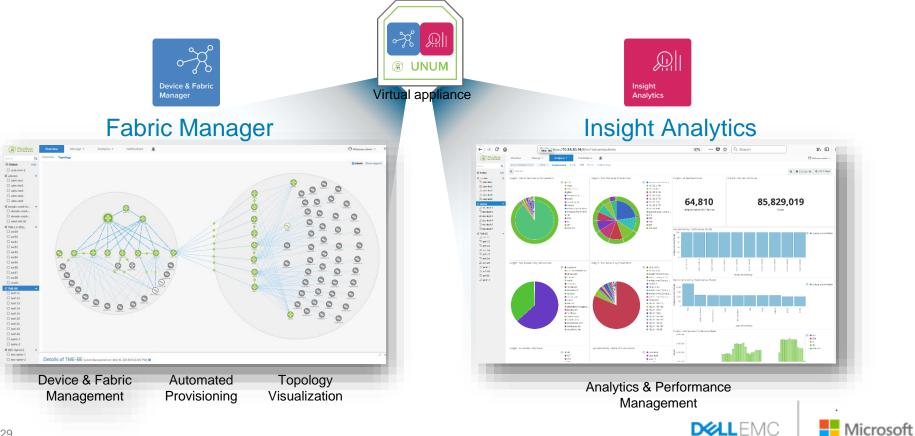
Big Cloud Fabric Controllers	Big Cloud P Fabric	
Service Rack 1	RACK 2 RACK 3 RACK 4 RACK 64	


Total 10G Leaf Compute/Service connectivity: 48 * 64 = 3072 (MLAG)

- Pair of Hardware Controllers
- 64 racks
- Maximum 16 Spine Switches
 - 10G spine connections to Leaf Switches
 - 40G breakout to 4 * 10G on Dell Z9100-ON (due to breakout capabilities available on all ports)

- 128 Leaf Switches
 - 2 per rack, 64 racks: 2 * 64 = 128
- Whilst 16 Spine Switches can be used, you must remember that each Spine Switch must connect to every Leaf Switch. Therefore each Leaf Switch would require 16 Spine to Leaf connections





Pluribus Adaptive Cloud Fabric

Pluribus UNUM[™] Unified Management, Automation and Analytics

Microsoft

Windows Server: Power your business

Thank you