Workshop della CCR, Rimini, 11-15 Giugno 2018

The AMS (and DAMPE) computing models and their integration into DODAS

Matteo Duranti

Istituto Nazionale Fisica Nucleare, INFN Perugia

- The AMS experiment and its computing model
- Recap from 2017: the integration of the AMS computing model into the DODAS framework:
 - the current working prototype layout
 - the final designed layout and its impact on CNAF
- The DAMPE experiment, the HERD project and their interest in the DODAS framework

The AMS experiment and the AMS-02 detector

- installed on the International Space Station, ISS, on May 19, 2011
- operations 24h/day, 365d/year, since the installation
- 300k readout channels + 1500 temperature sensors
- acquisition rate up to 2kHz
- more than 600 microprocessors to reduce the rate from 7 Gb/s to 10 Mb/s
- 4 Science Runs (DAQ start/stop + calibration) per orbit: I Science Run = ~ 23 minutes of data taking
- on May 2018, ~120 billion triggers acquired
- 35 TB/year of raw data

Sezione di Perugia

- First Production (a.k.a. "std", incremental)
 - Runs 365dx24h on freshly arrived data
 - Initial data validation and indexing
 - Usually available within 2 hours after flight data arriving
 - Used to produce calibrations for the second production as well as quick performance evaluation ("one-minute ROOT files", prescaled)
 - Used for non-critical on-line monitoring in the POCC
 - 100 cores (@ CERN) to keep up with the acquisition
- Second Production (a.k.a. "passN")
 - Every 6 months, incremental
 - Full reconstruction in case of major software update
 - Uses all the available calibrations, alignments, ancillary data...
 - 100 core-years per year of data

- First Production (a.k.a. "std", incremental)
 - Runs 365dx24h on freshly arrived data
 - Initial data validation and indexing
 - Usually available within 2 hours after flight data arriving
 - Used to produce calibrations for the second production as well as quick performance evaluation ("one-minute ROOT files", prescaled)
 - Used for non-critical on-line monitoring in the POCC
 - 100 cores (@ CERN) to keep up with the acquisition
- Second Production (a.k.a. "passN")
 - Every 6 months, incremental
 - Full reconstruction in case of major software update
 - Uses all the available calibrations, alignments, ancillary data...
 - 100 core-years per year of data

RAW

ROOT

Calibrations

alignments/ SlowControl

DB

ROOT

(Ready for physics analysis)

- In addition to ISS data, a full MC simulation of the detector with at least x10 statistics is needed:
 - To determine the Acceptance of the detector
 - To test the analysis flow
 - To test and train discriminating algorithms (for example MVA's)
 - To understand the irreducible background
 - The "beam" is unknown: in general all the CR species (at least according to their abundance), even if not directly under measurement, must be simulated (at all the energy, according to natural spectra [i.e. ~ power laws]) as possible source of background
 - MC based on Geant 4.10.1 (multi-thread, OPENMP) + custom simulations (digitization, capacitive coupling, ...)
 - As the detector understanding improves, new updated MC is required. Statistics that must follow the data statistics: 2015: ~ 8000 CPU-years, in 2016: ~11000 CPU-years, ...

For both ISS-Data and MC is necessary to produce:

- reduced dataset or "stream": not all the triggers but only the events that most likely will contain the signal of the analysis under consideration)
 - \rightarrow each "study group" has its own production and its own data format (directly the complete one or easily permitting the access to it)
- "mini-DST": ROOT ntuples with a lightweight data format (i.e. ROOT ntuples) and with not all the variables

✓ small size to allow the download also on local desktop/laptop and to permit the processing with a low I/O throughput

***** must be updated and extended on monthly base

the "std" production is done in the Scientific Operation Center, SOC,
 @CERN

 \rightarrow 200 cores fully dedicated to deframe, merge & deblock, reconstruct, ...

 the "one-minute ROOT file" production ("std" production prescaled and split in one-minute data files) is done in CERN OpenStack virtual machines

 \rightarrow 6 single-core machines fully dedicated to this production and to the delivery of the files to the ASIA-POCC

- the "passX" incremental production is done @CERN, on *lxbatch*)
- the "passX" full reproduction is done in the regional centers with an high speed connection
- MC production is done in the regional centers
- mini-DST (i.e. "ntuples") and analysis are done in the regional centers

the "std" production is done in the Scientific Operation Center, SOC,
 @CERN

 \rightarrow 200 cores fully dedicated to deframe, merge & deblock, reconstruct, ...

 the "one-minute ROOT file" production ("std" production prescaled and split in one-minute data files) is done in CERN OpenStack virtual machines

 \rightarrow 6 single-core machines fully dedicated to this production and to the delivery of the files to the ASIA-POCC

- the "passX" incremental production is done @CERN, on *lxbatch*)
- the "passX" full reproduction is done in the regional centers with an high speed connection
- MC production is done in the regional centers
- mini-DST (i.e. "ntuples") and analysis are done in the regional centers

M. Duranti – Workshop CCR 2017

M. Duranti – Workshop CCR 2017

- "std" production has a well established pipe-line production and requires a limited amount of CPU resources;
- the "passX" incremental production has a well established pipeline production and requires a limited amount of CPU resources;
- the full reproduction of the "passX" (i.e. the "passX+1") requires a big amount of resources, in a limited time, increasing with the mission time;
- the MC production must follow the "passX" statistics and sw and detector calibration updates;
- the "mini-DST" production and the analysis must follow the "passX" statistics and sw and detector calibration updates;

- "std" production has a well established pipe-line production and requires a limited amount of CPU resources;
- the "passX" incremental production has a well established pipeline production and requires a limited amount of CPU resources;
- the full reproduction of the "passX" (i.e. the "passX+I") requires a big amount of resources, in a limited time, increasing with the mission time;
- the MC production must follow the "passX" statistics and sw and detector calibration updates;
- the "mini-DST" production and the <u>analysis</u> must follow the "passX" statistics and sw and detector calibration updates;

The resources coming from temporary "providers" or from "small clusters" (e.g. the 300core@ASI-SSDC) often are under-used to avoid the work to port and adapt the needed workflow (e.g. by users)

M. Duranti – Workshop CCR 2017

- the job is running a "custom" executable, reading the "official" AMS ROOT files (few GB, @CERN on the 'eosams' space);
- the executable is linked against some libraries, common to all the users (for example the libraries of the AMS patched ROOT), that are needed in a "shared" place: "common static librarie";
- the executable is linked against some libraries, specific for each user (for example the AMS-sw, that each user has in the required version and/or patched and other libraries from the same user sw framework), that are needed in a "shared" place: "user libraries";
- the job needs to read some text files (few KB, easy to transfer for every job) and "ancillary" ROOT files (few MB, @CNAF or @CERN on the user EOS space, i.e. "CERNbox" or 'eosams/user'): "input files";
- the job writes the "mini-DST" ntuples (few tens of MB, ~ 3TB for the total production);

INFN What is already in place (@PG) for the user?

- Short term:
 - ✓ Remote access (Input and Output) to TI storage (i.e. "gpfs_ams"): interface (XRootD)
 - especially for output the eospublic (i.e. "CERNbox") or the eosams/user are temporary solutions limited to few TB's
 - \checkmark HTCondor client on UI-AMS
 - to use that machine and its storage to work and submit the jobs
- Mid/long term:
 - Shared filesystem where to host the "static common libraries" (CVMFS?)
 - Shared filesystem where to host the "user libraries" (???)
 - Remote access (Input and Output) to TI storage (i.e. "gpfs_ams"): bandwith (O(Gbps) once used) and interface (XRootD)
 - HTCondor client on UI-AMS accessible from everywhere in the world and TI resources accessible via HTCondor (instead of LSF)
 - Authentication mechanism

- Short term:
 - Access to Cloud@CNAF and @ReCaS-Bari resources:
 - to perform tests on the scalability of the system
 - to increase our pool
- Mid/long term:
 - Integration of additional resources (temporary chinese clusters, T2@ASI-SSDC) in a <u>single and coherent</u> batch system (for example with a <u>single</u> working dir and UI)
 - Exploration, in a effortless way, of different architectures:
 - HPC
 - Specialized hw
 - Big-data (for ML) frameworks

- operating in space, on board a Chinese satellite, since Dec 17, 2015
- operations 24h/day, 365d/year, since the launch
- 75k readout channels + temperature sensors
- acquisition rate up to 100Hz
- ~ 15 GB per day transmitted to ground:
 - ~ 15 GB/day raw data
 - ~ 15 GB/day raw data + Slow Control and orbit informations (ROOT format)
 - ~ 70 GB/day reconstructed data (ROOT format)
 - \rightarrow ~ 100 GB/day (35 TB/year) in total

- operating in space, on board a Chinese satellite, me the 7, 2015
- operations 24h/day, 365d/year, since the low here
- 75k readout channels nod temperaturosciencos
- acquisition para GQU 100Hz mewo
- ~ GB per de SarPritted to grath
 - $\sim 15 GR/ea)$ at data
 - -~ IS GB/day myrice Slow Control and orbia O informations (ROOT format)
 - $\sim 70 \text{ GB/day}$ reconstructed data (ROOT format)
 - \rightarrow ~ 100 GB/day (35 TB/year) in total

ed

• The detector is designed to be "isotropic" and accept CR from all (5) the sides

- operating in space, on board the Chinese Space Station starting from 2024
- charged CR physics but also γ -ray physics
- ~ O(IM) read-out channels

- The first tests to integrate the AMS workflow in a DODAS-like framework are succesful;
- Once the tests are complete (scalability and integration of different physical clusters verified) we would like to integrate also the DAMPE (and later the HERD) workflow in such a system;
- We are a comunity eager of resources and poor in terms of manpower for computing: we're willing to test any solution to increase our pool of resources and to keep up with the software infrastructure developments, with a limited amount of effort;

Backup

- Fundamental physics and antimatter:
 - primordial origin (signal: anti-nuclei)
 - "exotic" sources (signal: positrons, anti-p, anti-D, γ)
- Origin and composition of CRs in the GeV-TeV range
 - sources and acceleration: primaries (p, He, C, ...)
 - propagation in the ISM: secondaries (B/C, ...)
- Study of the solar and geomagnetical physics
 - effect of the solar modulation
 - geomagnetic cutoff

5 m x 4 m x 3m • 7.5 tonnes

300k readout channels

•

 more than 600 microprocessors
 reduce the rate from 7 Gb/s to 10 Mb/s

• total power consumption < 2.5 kW

August 2010: AMS-02 completely assembled and commissioned and ready to be shipped to Kennedy Space Center, KSC

Sezione di Perugia INFN Stituto Nazionale di Fisica Nucleare The AMS experiment and the AMS-02 detector

22/03/17

M. Duranti - Workshop CCR 2017

M. Duranti – Workshop CCR 2017

• the "std" production is done in the Scientific Operation Center, SOC, @CERN

 \rightarrow 200 cores fully dedicated to deframe, merge & deblock, reconstruct, ...

 the "one-minute ROOT file" production ("std" production prescaled and split in one-minute data files) is done in CERN OpenStack virtual machines

 \rightarrow 6 single-core machines fully dedicated to this production and to the delivery of the files to the ASIA-POCC

- the "passX" incremental production is done @CERN, on *lxbatch*)
- the "passX" full reproduction is done in the regional centers with an high speed connection
- MC production is done in the regional centers

• the "std" production is done in the Scientific Operation Center, SOC, @CERN

 \rightarrow 200 cores fully dedicated to deframe, merge & deblock, reconstruct, ...

 the "one-minute ROOT file" production ("std" production prescaled and split in one-minute data files) is done in CERN OpenStack virtual machines

 \rightarrow 6 single-core machines fully dedicated to this production and to the delivery of the files to the ASIA-POCC

- the "passX" incremental production is done @CERN, on *lxbatch*)
- the "passX" full reproduction is done in the regional centers with an high speed connection
- MC production is done in the regional centers

• Both the AMS and DAMPE production workflows need to be deployed in several and etherogeneous clusters

→ the workflow is, by design, lightweight and "simple" to allow to be adapted, by hand, to the various regional centers
 → deploying the workflow in "new" resources is not costless

Both the AMS and DAMPE computing models are not fully compliant with the *cloud computing* paradigma
 → deploing the workflow in a modern computing infrastructure such as cloud laaS is not trivial

- Medium/small size collaborations, such as AMS and DAMPE have not the man power to re-design and re-implement their sw
 - \rightarrow the answer can come from: DODAS

- Fully-automated production cycle
 - Job acquiring, submission, monitoring, validation, transferring, and (optional) scratching
- Easy to deploy
 - Based on Perl/Python/sqlite3
- Customizable
 - Batch system (LSF, PBS, HTCondor...), storage, transferring, etc...
- Running at:
 - LXBATCH, JUROPA and RWTH, CNAF, IN2P3, NLAA, SEU, AS, ...

- CNAF joins the effort of the passX full reproduction
- CNAF joins the effort of the MC production
- RAW FRAMES and RAW are copied to tape@CNAF as the Master Copy of the Collaboration
 - Multi-threaded finite state automaton (written in Python) + state transition jobs (written in Perl)
 - It uses a database (Mysql/Oracle) for book-keeping
 - It relies on GRID's file transfer protocols.
 - Thanks to the direct srm to srm protocol, able to achieve 1.2Gbit/s throughput performance

Antihelium and AMS

At a signal to background ratio of one in one billion, detailed understanding of the instrument is required.

Detector verification is difficult.

- 1. The magnetic field cannot be changed.
- 2. The rate is ~1 per year.
- 3. Simulation studies:

Helium simulation to date: 2.2 million CPU-Days = 35 billion simulated helium events: Monte Carlo study shows the background is small

How to ensure that the simulation is accurate to one in one billion?

The few events have mass 2.8 GeV and charge -2 like ³He. Their existence has fundamental implication in physics.

It will take a few more years of detector verification and to collect more data to ascertain the origin of these events. 73

Sezione di Perugia (Jisti NFN and CNAF role in the Computing Network (Jisti Nucleare

- CNAF is also the main computing resource for the Italian Collaboration
 - ~ I 2000 HS06
 - ~ 2 PB of storage on gpfs + 500 TB of storage on tape
 - queue for the production of the "Data Summary Tape" for the Italian analyses ("gold" users)
 - queues for the analysis (all users)
- Remote access of the data @ CNAF from the local farms in the various INFN structures
 - based on the use of the General Parallel File System (GPFS) and of the Tivoli Storage Manager (TSM) + a single, geographically-distributed namespace, characterized by automated data flow management between different locations has been defined (thanks to the Active File Management, AFM, of GPFS)
 - a "pre-selection" scheme permits the access to the full data format only transmitting the interesting events (or even just part of)

 Dark Matter indirect search (γ -rays and electrons in the GeV – 10 TeV energy range)

 Study of the composition and of the spectral features of CR's, in the GeV – 100 TeV range

• High energy photon astronomy

- operating in space, on board a Chinese satellite, since Dec 17, 2015
- operations 24h/day, 365d/year, since the launch
- 75k readout channels + temperature sensors
- acquisition rate up to 100Hz
- ~ 15 GB per day transmitted to ground:
 - ~ 15 GB/day raw data
 - ~ 15 GB/day raw data + Slow Control and orbit informations (ROOT format)
 - ~ 70 GB/day reconstructed data (ROOT format)
 - \rightarrow ~ 100 GB/day (35 TB/year) in total

• CHINA

- Purple Mountain Observatory, CAS, Nanjing
- Institute of High Energy Physics, CAS, Beijing
- National Space Science Center, CAS, Beijing
- University of Science and Technology of China, Hefei
- Institute of Modern Physics, CAS, Lanzhou

• ITALY

- INFN Perugia and University of Perugia
- INFN Bari and University of Bari
- INFN Lecce and University of Salento

SWITZERLAND

- University of Geneva

Prof. Jin Chang

- Flight data handling reconstruction is done in the PMO cluster
 → 1400 cores that are designed to fully reprocess 3 years
 (expected mission duration) of DAMPE data within 1 month
- MC production is done in Europe (UniGe-DPNC cluster and, mainly, CNAF and ReCaS Bari)

 \rightarrow 2016: 400 core-years used to produce all the datasets corresponding to ~ I year of flight data

 Data transfer China ←→ Europe is based on gridftp and limited to 100 Mb/s (the PMO connection to the China Education and Research Network, CERNET)

 \rightarrow 6 cores @ PMO

→ during full reproductions: "by hand" (China to Europe and PMO to IHEP) protocol...

• Data transfer Italy $\leftarrow \rightarrow$ Geneva is based on *rsync*

 \rightarrow 10 cores @ CNAF

MC production workflow manger:

- light-weight production platform
- web-frontend and command tools based on the flask-web toolkit
- influenced by the Fermi-LAT data processing pipeline and the DIRAC computing framework
- NoSQL database using MongoDB

MC simulation:

- MC based on Geant + custom simulations (digitization, ...)
- run almost completely in Italy (CNAF and ReCaS Bari)

MC transfer:

- DAMPE server @ IHEP, Beijing and 'fast' transfer using the Orientplus link of the Geant Consortium
- IHEP \rightarrow PMO transfer done using the "by hand" protocol \odot

- China and Europe essentially decoupled for connection limitations
- In Europe, MC and flight data are accessible via an XRootD federation (UniGe-DPNC, CNAF and ReCaS).
- The data analysis is done "locally": each institution is using its National resources
- Each study group is defining, producing and using its own "mini-DST" reduced dataset

- CNAF is the "mirror" of the flight data outside China
 - \rightarrow 100 TB on gpfs (200TB for 2018)
 - \rightarrow 0 on tape (100TB for 2018)
- CNAF and ReCaS are the main MC production sites
- CNAF is also the main computing resource for the Italian Collaboration

 \rightarrow 3k HS06 pledged... Obtained 13k HS06, mainly used for MC production (8k HS06 per 2018)

• ReCaS is also the XRootD redirector

Sezione di Perugia INFN Stitute Nazionale di Esida Nucleare The AMS experiment and the AMS-02 detector

Payload Operation Control Center, POCC inside the BFCR (Blue Flight Control Room) at the MCC-H (Mission Control Center, Houston)

Flight Operations Ground Operations

TDRS Satellites

Ku-Band High Rate (down): Events <10Mbit/s> ~17 billion triggers, 35 TB of raw data per year

S-Band Low Rate (up & down): Commanding: 1 Kbit/s Monitoring: 30 Kbit/s

White Sands Ground Terminal, NM

AMS Payload Operations Control and Science Operations Centers (POCC, SOC) at CERN AMS Computers at MSFC, AL

22/03/17

M. Duranti - Workshop CCR 2017

- RAW data from the NASA Marshal Space Flight Center, MSFC (Huntsville, AL) are packed in fixed-size FRAMES, uniquely identified by the triplet (APID, Time, SeqNo).
- The data format and protocol are decided by Consultative Committee for Space Data System (CCSDS).

- RAW data from the NASA Marshal Space Flight Center, MSFC (Huntsville, AL) are packed in fixed-size FRAMES, uniquely identified by the triplet (APID, Time, SeqNo).
- The data format and protocol are decided by Consultative Committee for Space Data System (CCSDS).
- The FRAMES contain, as payload, the real AMS RAW data, the AMS-BLOCKS
- Deframing/Merging
 - FRAMES are unpacked (deframed) to extract AMS-Blocks
 - AMS-Blocks are merged to build-up AMS Science Runs
 - Holes and transmission errors or corruptions are identified at merging time
 - \rightarrow playback from AMS Laptop on ISS

RAW (FRAMES)
35 TB/year
RAW
35 TB/year

Reconstruction

- RAW data (i.e. sequences of AMSBlocks) are decoded to extract detector RAW signals
- Reconstruction applied: High level objects are created from the RAW signals
- ROOT files with the 'final' data format are created

