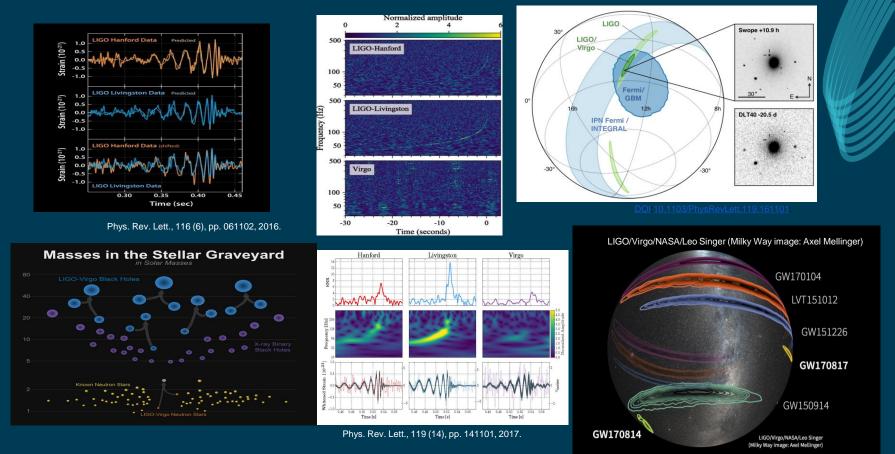


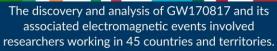
Machine Learning for Gravitational waves. Deep learning methods to study the noise of interferometer

> E. Cuoco and M. Razzano CCR workshop, Rimini 14/06/2018

Elena Cuoco <u>www.elenacuoco.com</u> Twitter: @elenacuoco


VIR-0343A-18

Gravitational wave astronomy: A global effort



LISA

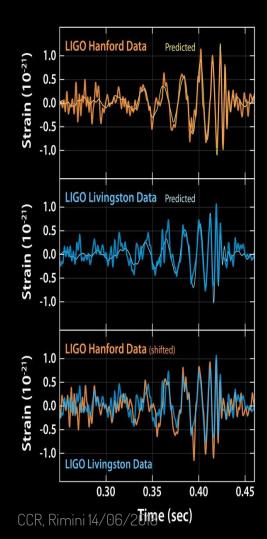
GW discoveries: new era in Astronomy

Gravitational wave astronomy: A global effort

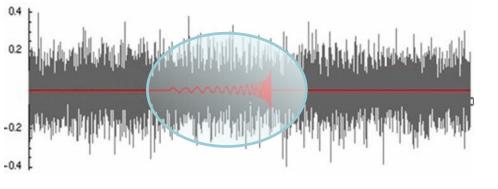
۲

VIRGO

LISA


KAGRA

LIGO


LIGO

Why Machine Learning in Gravitational Wave research

WE 3 km WI 3 km NE BS From the laser Fabry-Perot arm cavity PRM \bigcirc Photodetector

LIGO/Virgo data

are time series sequences... **noisy time series** with low amplitude GW signal buried in

CCR, Rimini 14/06/2018

Elena Cuoco

Our "signals"

Known GW signals

Compact coalescing binaries has known theoretical waveforms

Unknown GW signals

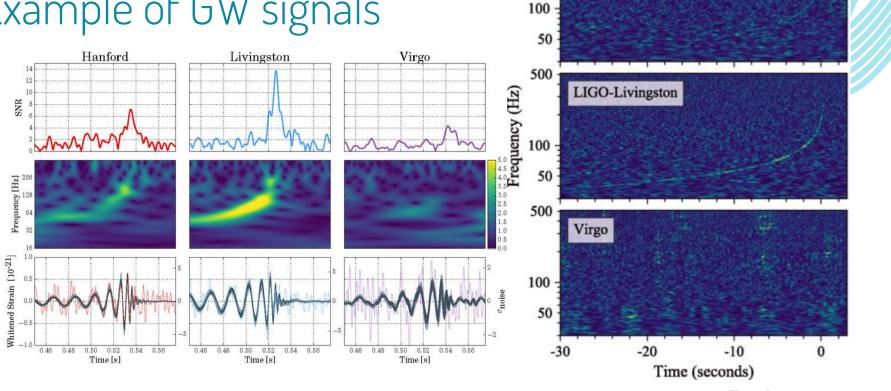
Core collapse supernovae

No Optimal filter

Optimal filter: Matched filter

Too many templates to test

Parameters estimation


Glitch noise

"Pattern recognition" by visual inspection

Example of GW signals

500

LIGO-Hanford

CCR, Rimini 14/06/2018

Elena Cuoco

Normalized amplitude

8

https://www.zooniverse.org/projects/zooniverse/gravity-spy

Example of Glitch signals

1080Lines	1400Ripples	Air_Compressor	Blip	Chirp	Extremely_Loud	Helix
Koi_Fish	Light_Modulation	Low_Frequency_Burst	Low_Frequency_Lines	None_of_the_Above	Paired_Doves	Power_Line
and the second	Alak V			Sec.		
Repeating_Blips	Scattered_Light	Scratchy	Tomte	Violin_Mode	Wandering_Line	Whistle

CCR, Rimini 14/06/2018

Elena Cuoco

Frequency (Hz)

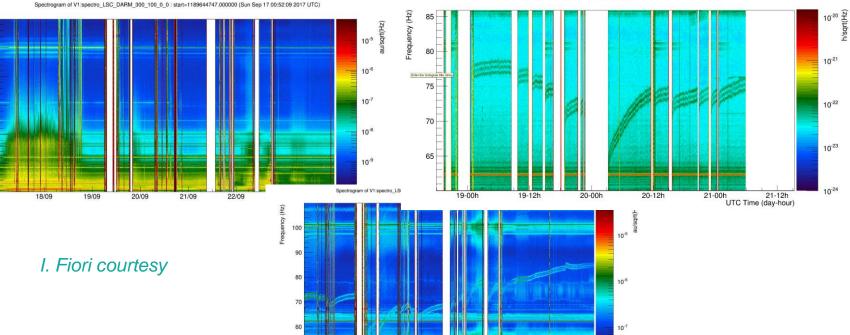
50

40

30

20

10


Example of other noise signals

50

19/09

20/09

Spectrogram of V1:spectro_Hrec_holt_20000Hz_300_100_0_0 : start=1210701379.000000 (Fri May 18 17:56:01 2018 UTC)

21/09

22/09

23/09

24/09

UTC Time (day-hour)

25/09

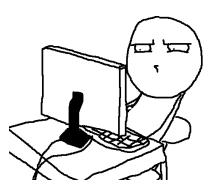
CCR, Rimini 14/06/2018

10

Numbers about data

Data Stream Flux	Data on disk	Number of events	Number of glitches			
• 50MB/s	• 1-3PB	 1/week 1/day?	 1/sec 0.1/sec?			

Should be analysed in less than 1min


How Machine Learning can help

Data conditioning

- Non linear noise coupling
- Use Neural Network to learn noise
- Use Neural Network to remove noise

Signal Detection/Classification/PE

- A lot of fake signals due to noise
- Fast alert system
- Manage parameter estimation

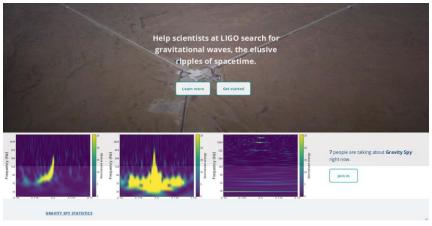
What is going in the ML LIGO/Virgo group

136 LIGO/Virgo members

30 active projects

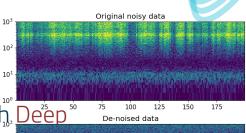
PCATINE Derois interverter to the state of t

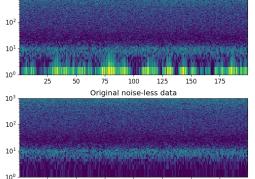
>60 members at the last f2f meeting


CCR, Rimini 14/06/2018

Example of interesting works

Labelling glitches: Gravity Spy


S. Coughlin courtesy


CCR, Rimini 14/06/2018

Noise Removal

Non-linear and non-stationary noise subtraction with Deep Learning

G. Vajente courtesy

25

50 75 100 125 150 175 Elena Cuoco 14

10⁻⁴ 10⁻⁵ 10⁻⁶

10-7

10⁻⁸ 10⁻⁹

10-10

10-11

E 10-12

10⁻⁴ 10⁻⁵

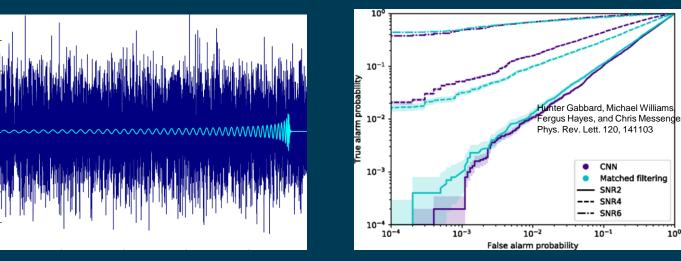
10-6

10⁻⁷ 10⁻⁸ 10⁻⁹

 10^{-10} 10^{-11} 10^{-12}

10-4

 10^{-5} 10^{-6}


10-7

10⁻⁸

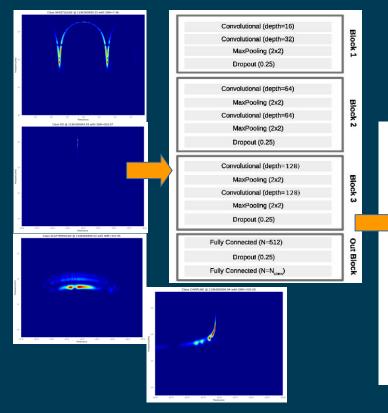
 10^{-10} 10^{-11} 10^{-12}

Signal detection

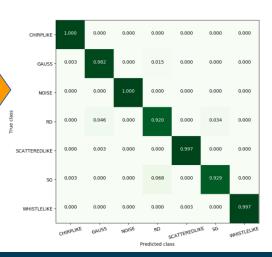
Perfomance similar to Optimal Wiener Filter

CNN

10-1


Matched filtering SNR2 SNR4 SNR6 _ . _

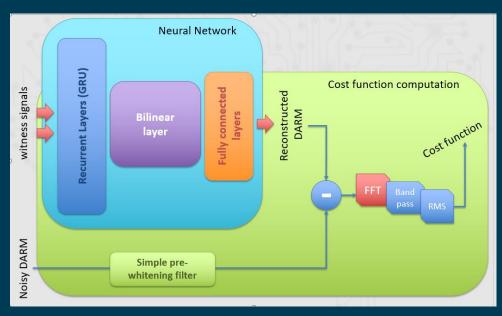
10⁰

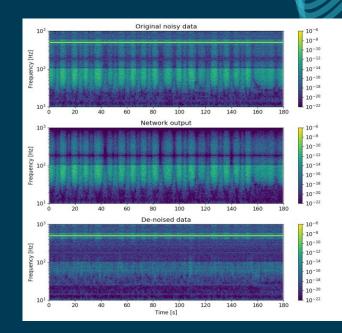

Glitch classification (M. Razzano's talk)

Massimiliano Razzano and Elena Cuoco

2018 Class. Quantum Grav. 35 095016

Deep learning with CNN


Confusion Matrix (Normalized)


16

Gabriele Vajente¹,

Michael Coughlin¹, Rich Ormistom² ¹LIGO Laboratory Caltech ²University of Minnesota Twin Cities

17

18

G2net: A network for Gravitational Waves, Geophysics and Machine Learning COST Action 17137) Main Proposer: E. Cuoco, EGO

G2net: goals of the ACTION

Facilitate conceiving innovative solutions for the analysis of the data of Gravitational Wave (GW) detectors. Investigate possible solutions to monitor the low-frequency Newtonian noise through the use of adaptive robots.

Train a new generation of young scientists with broad skills in Machine Learning, GW, Control and Robotics.

Investigate new strategies for the handling/suppression of instrumental and environmental noise using Machine Learning techniques.

Bridge the gap between the disciplines of GW physics, geophysics, computer science and robotics

Elena Cuoco

THANKS!

Questions after Max Razzano's talk

- You can find me at:
- @elenacuoco
- <u>elena.cuoco@ego-gw.it</u>

CREDITS: Presentation template by SlidesCarnival