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Where HEP stands about ML, and where ML itself stands

Pioneers: 

• pioneering studies employing ML at previous-generation experiments laid the 
groundwork for the emergence of ML as an essential tool (e.g. at the LHC, but not only) 

Past two decades (HEP timescales..): 

• HEP has been migrating towards the use of ML methods in collection and analysis of 
large data samples 

• ML algorithms made important contributions (e.g. to the discovery of the Higgs boson). 
Nowadays, plenty of data-analysis tasks (and not only) benefit from the use of ML 

Past few years (non-HEP timescales..): 

• in parallel, the ML field has developed at a rapid pace, and in particular the “new” 
subfield of DL has delivered genuinely superhuman performance in a number of 
domains 

Cross-discipline (cultural and technical) bridging 

• Incorporating these new tools while maintaining the scientific rigour required in particle 
physics analyses presents some unique (not only technical!) challenges and 
opportunities
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“Which” ML for HEP?

Very wide field of supervised ML (mostly), e.g. training algorithms 
to classify data as signal or background by studying existing labeled 
(possibly Monte Carlo) data. 

Typical ML workflow in HEP? (simplified..) 

• problem statement and data preparation: variables relevant to the physics 
problem are selected, data are cleansed, etc 

• training: e.g. a ML model is trained for classification using signal and 
background events (the most human- and CPU- time consuming) 

• inference: relatively inexpensive 

Typical ML algorithm for HEP? 

• a large plethora of categories of algorithms to even attempt to list them here  

• mostly: Boosted Decision Trees (BDTs) and Artificial Neural Networks (ANNs) 

• then, expanding from these to more..
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More on ML algorithms in HEP
BDTs/ANNs typically used to classify particles and events 

• they are also used for regression, e.g. to obtain the best estimate of particle’s energy based 
on the  measurements from several detectors 

ANNs being used for a while in HEP, then.. → rise of DNNs 

• particularly promising when there is a large amount of data and features, as well as 
symmetries and complex non-linear dependencies between inputs and outputs 

Different types of NNs used in HEP: 

• fully-connected (FCN), convolutional (CNN), recurrent (RNN) network 

• additionally, NNs are used in the context of Generative Models, when a NN is trained to 
mimic multidimensional distributions to generate any number of new instances. Variational 
AutoEncoders (VAEs) and more recent Generative Adversarial Networks (GANs) are two 
examples  of such generative models used in HEP.  

Plus, ML algorithms devoted to time-series analysis and prediction 

• in general not relevant for HEP where events are independent from each other 

• however, growing interest in these algorithms for HEP-related sequential non-collision data, 
e.g. for Data Quality and Computing Infrastructure monitoring (as well as those physics 
processes and event reconstruction tasks where time is an important dimension)
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HEP as ML consumers, not producers

At a first approximation, most ML usage in HEP is not ML research 

• HEP community is being building domain-specific applications on top of 
existing toolkits and ML algorithms developed by computer  scientists, data 
scientists, and scientific software developers from outside the HEP world 

Work is also being done to understand where HEP problems do not 
map well onto existing ML paradigms and how these problems can 
be recast into abstract formulations of more general interest
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Frameworks and tools

HEP-physicists nowadays mostly use TMVA in ROOT. 

Non-HEP scientists (and not only!) use e.g.:
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HEP not at all closed to the worldwide approach to ML: quite the 
opposite! 

• from Adaboost  DT  or  Multilayer  Perceptron  NN  (MLP), to state-of-the-art 
XGBoost DT or Deep NN (e.g. Tensorflow) or GANs or …



Opportunities and challenges
Abundance: the number of ML algos and implementations 
in a growing variety of frameworks and libraries 

❖ drawback: difficult and time-consuming to evaluate tradeoffs for using one  
ML “tool” compared to another, and also tradeoffs for ML vs non-ML solutions 

Advancement: extremely quick 
❖ drawback: HEP research teams need to investigate the numerous 

approaches at hand, adequate skills are needed to follow up,  
complexity requires not-best-effort engagements 

Open-source and code accessibility, documentation, training: the 
portfolio of ML techniques and tools is in constant evolution, many have 
well-documented open source software implementations, often 
supported by MOOCs, etc 

❖ drawback: acquired expertise and lessons learned by few people risks to get lost before being adequately 
disseminated to a wider community + issues in adequate training of young HEP collaborators 

Hype: guarantees attention 
and investments 

❖ drawback: overhyped?!
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TensorFlow

Keras
pytorch
(theano, Spark, ..)
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Up to now..

ML in HEP as the use of field-specific knowledge for feature engineering

i.e. use physicist-designed high-level features as input to shallow algorithms



Particle properties: energy resolution
Using ML to improve the determination of particle properties is now 
commonplace in all LHC experiments 

• E.g. energy deposited in calorimeters is recorded by many sensors, which are 
clustered to reconstruct the original particle energy. CMS is training BDTs to 
learn corrections using all information available in the various calorimeter 
sensors - thus resulting in a sizeable improvement in resolution
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Improvements to the Z→e+e- 
energy scale and resolution from 

the incorporation of more 
sophisticated clustering and 
cluster correction algorithms  

(energy sum  over  the  seed  5x5  
crystal matrix,  bremsstrahlung  
recovery  using  supercluster, 

inclusion of pre-shower energy, 
energy correction using a 
multivariate algorithm)

betterbetter

[ 2015 ECAL detector performance plots, CMS-DP-2015-057. Copyright CERN, reused with permission ]



Particle ID
Similarly, ML is commonly used to identify particle types 

• e.g. LHCb uses NNs trained on O(30) features from all its subsystems, each of 
which is trained to identify a specific particle type  

• ~3x less mis-ID bkg /particle. Estimates indicate that more advanced 
algorithms may reduce bkg by another ~50%
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Discovery of the Higgs boson
ML played a key role in the discovery of the Higgs boson, especially 
in the diphoton analysis by CMS where ML (used to improve the 
resolution and to select/categorize events) increased the sensitivity 
by roughly the equivalent of collecting ~50% more data.  
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We were not supposed to discover the Higgs boson as early as 2012 

• Given how machine progressed, we expected discovery by end 2015 / mid 2016 

We made it earlier thanks (also) to ML

[courtesy M.Pierini]



Study of Higgs properties
E.g. analysis of 𝜏 leptons at LHC complicated as they decay before being 
detected + loss of subsequently produced neutrinos + bkg from Z decays 

• e.g. ATLAS divided the data sample into 6 distinct kinematic regions, and in each a 
BDT was trained using 12 weakly discriminating features → improved sensitivity by 
~40% vs a non-ML approach 
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[arXiv:1501.04943]

Also part of the 
2014 Higgs ML 

Kaggle challenge



High-precision tests of the SM
CMS and LHCb were the first to find evidence for the B0

s→𝜇+𝜇- decay with a 
combined analysis (as rare as ~ 1 / 300 billion pp collisions..) 

• BDTs used to reduce the dimensionality of the feature space - excluding the mass - to 1 
dimension, then an analysis was performed of the mass spectra across bins of BDT 
response 

• decay rate observed is consistent with SM prediction with a precision of ~25%, placing 
stringent constraints on many proposed extensions to the SM 

• To obtain the same sensitivity without ML by LHCb as a single experiment would have 
required ~4x more data. Just one of many examples of high-precision tests of the SM at 
the LHC where ML can dramatically increase the power of the measurement

CCR - Rimini, June 2018 D. Bonacorsi13

Mass distribution of the 
selected B0 → μ+μ− 

candidates with BDT > 0.5. 

[arXiv: 1703.05747]



Trigger

Crucial trade-off in algorithm complexity and performance under 
strict inference time constraints 

E.g. ATLAS/CMS each only keep about 1 in every 100 000 events, 
and yet their data samples are each still about 20 PB/yr 

• ML algorithms have already been used very successfully for rapid event 
characterisation 

• adoption depth vary across experiments, but the increasing event complexity 
at HL-LHC will require more sophisticated ML solutions and its expansion to 
more trigger levels 

A critical part of this work will be to understand which ML 
techniques allow us to maximally exploit future computing 
architectures
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Trigger (cont’d)

E.g. CMS employs ML in its trigger hardware to better estimate the 
momentum of muons 

• inputs to the algorithm are discretised to permit encoding the ML response in 
a large look-up table that is programmed into FPGAs 

E.g. LHCb, many of the reactions of greatest interest do not 
produce striking signatures in the detector, making it necessary to 
thoroughly analyse high-dimensional feature spaces in real time to 
efficiently classify events 

• LHCb used a BDT for 2 years, then a MatrixNet algorithm 

• ML now almost ubiquitous in LHCb Trigger. 70% of all persisted data is 
classified by ML algorithms. All charged-particle tracks are vetted by NNs.  

• LHCb estimated that reaching the same sensitivity as a recent LHCb search for 
the dark matter on 2016 data, would have required collecting data for 10 yrs 
without the use of ML
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Tracking

Pattern recognition has always been a computationally challenging 
step 

• e.g. the HL-LHC environment makes it an extremely challenging task 

Adequate ML techniques may provide a solution that scales linearly 
with LHC intensity. 

Several efforts in the HEP community have started to investigate 
sophisticated ML algorithms for track pattern recognition on many-
core processors.  
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No time to cover all this area in details..



Computing resource optimisations
Industrial-scale data samples collected by e.g. LHC experiments produce 
non-collisions metadata from which actionable insights can be extracted 

• results of logging while running Run-1/2 operations of complex WM and DM 
systems 

ML techniques have begun to play a crucial role in increasing the 
efficiency of computing resource usage for LHC experiments since few 
years 

• e.g. predicting which data will be accessed the most to a-priori optimise data 
storage at Grid computing centres via pre-placement, or perform WAN path 
optimisation based on user access historical patterns (done/in-progress primarily, but 
not only, in LHCb and CMS) 

• e.g. monitoring data transfer latencies over complex network topologies, using ML 
to identify problematic nodes and predict likely congestions (in progress by CMS) 

Current approach is that ML informs the choices of the computing 
operations teams 

• this might be the basis of fully adaptive models in the next future
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Now to ~2020/22?

ML in HEP as the use of  full high-dimensional feature space to train 
cutting-edge ML algorithms (e.g. DNNs) 

As in computer vision and NLP, growing effort in HEP too to skip the 
feature-engineering step. How well can we do using deeper networks and/

or special architectures? 



Do DNNs need us?
Does a DNN need high-level features like invariant masses, or can it just learn the 
physics by itself from the 4-vectors (once it is given examples)? 

• If a DNN using low-level features outperforms any selection based only on high-level features.. 

ML models with limited capacity to learn complex non-linear functions of the inputs 
rely on painful manual construction of helpful non-linear feature combinations to guide 
the shallow networks. But recent DL advancements allow to automatically discover 
powerful non-linear feature combinations, thus providing better discrimination power. 

Demonstrated improvements O(~10%) over the best current approaches  

• DL techniques can provide powerful boosts to searches for exotic particle 
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Higgs benchmark: comparison of bkg 
rejection vs signal efficiency for the 

traditional learning method (left) and 
the DL method (right) using the low-
level features, the high-level features 

and the complete set of features.

Traditional DL 

[arXiv:1402.4735]



CNNs
CNNs are deep FFNNs with architecture inspired by the visual cortex 

• CNN neurons seek local examples of translationally invariant features. 
Convolutional filters locate patterns producing maps of simple features. Complex 
features are built using many layers of simple feature maps.  

Used to solve a large variety of problems, including many in image 
recognition
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Similar work ongoing at: 

• other neutrino experiments - e.g. NOvA 

❖ inspired to GoogLeNet architecture. Improvement in the efficiency of selecting electron neutrinos by 40% with no loss 
in purity. Used as event classifier in both an electron neutrino appearance search, and in a search for sterile neutrinos 

• collider experiments in the area of jet physics 

CNNs for neutrinos
MicroBooNE has managed to train CNNs that can locate neutrino interactions 
within an event in the LArTPC, identify objects and assign pixels to them 

• CNN perfect to identify objects in an image (translational invariant feature learning), and 
sensitive volumes are large due characteristics of neutrino interaction with matter
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[more at arXiv:1611.05531]

[arXiV:1604.01444]

[arXiv:1511.05190]
[arXiv:1603.09349]



Does this remind you of something?
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Neutral currents in BEBC - WA21 CC Charm Event: 
Roll 204, Frame 995 [CERN]

The data taking pace has changed 

• e.g. BEBC in 1973-83 equals to 6 
seconds of (e.g.) LHCb today 

• e.g. LHC sensor arrays’s 1 hr equals 
to ~ Facebook data in 1 year 

• algorithms running on large 
computing farms took over long ago 

Still dealing with inability for 
humans to visually inspect vast 
amounts of data 

• Indeed, inability “for humans”..



Arguing “HEP is different”..
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Scene labelling
in automotive applications

MicroBooNE examples of cosmic 
bkg events with detected neutrino 
bounding boxes with low scores.

[arXiv:1611.05531]
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Airports detection 
from satellite images

with CNNs

MicroBooNE examples of cosmic 
bkg events with detected neutrino 
bounding boxes with low scores.

[Remote Sens. 2017, 9, 1198; doi:10.3390/rs9111198 ]

Arguing “HEP is different”..

[arXiv:1611.05531]



More on particle ID and particle properties

In CALOs or TPCs the data can be represented as a 2D or 3D image 
(even 4D, including timing information): the problem can be cast as 
a computer vision task.  

DL techniques in which DNNs are used to reconstruct images from 
pixel intensities are good candidate to identify particles and extract 
many parameters 

• promising DL architectures for these tasks include (at least) CNN, RNN 

• e.g. LArTPCs is the chosen detection technology for DUNE (the new flagship 
experiment in the neutrino programme). A proof of concept and comparison 
of various DL architectures is expected to be finalised by 2020 

• e.g. b-tagging in collider experiments. Techniques also from NLP are 
expected to be finalised by 2020
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Simulation
Physics-based full simulation modelling in HEP (with GEANT 4 as the state of the 
art) is very computationally demanding 

• e.g. for LHC, the large samples to be generated for future experimental runs and the increase 
in luminosity will exacerbate the problem, prohibitive also for GEANT  

This already sparked the development of approximate, Fast Simulation solutions 
to mitigate this computational complexity - especially relevant in calorimeter 
showers simulations 

Promising alternatives for Fast Simulation may be built on recent progress in high 
fidelity fast generative models 

• e.g. Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs) 

• ability to sample high dimensional feature distributions by learning from existing data samples 

A simplified first attempt at using such techniques in simulation saw orders of 
magnitude increase in speed over existing Fast Simulation techniques, of which 
all HEP experiments would largely benefit 

• not yet reached the required accuracy, though 

Perhaps more towards >2020, but promising.
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E.g. CaloGAN, a new FastSimulation technique, to simulate 3D HEP showers 
in multi-layer ECAL systems with GANs 

• basically, CaloGAN can generate the reconstructed Calo image using random noise, 
skipping the GEANT and RECO steps  - thus making it 10k faster than GEANT..

CCR - Rimini, June 2018 D. Bonacorsi27

Simulation (cont’d)
E.g. exploit GANs, a 2-NN game where one maps noise to images, and the 
other classifies the images as real vs fake (the best generator is the one that 
maximally confuses its adversary)

CaloGAN composite generator 
(up) and discriminator (down) 

[arXiv:1712.10321]



HEP data format for ML
(might look ML-unrelated, but it deeply is) 

HEP relies on the ROOT format for its data, whereas the ML 
worldwide community has developed several other formats (often 
associated with specific ML tools) 

A desirable data format for offline usage with ML world-class 
applications and frameworks should have the following attributes: 

• high read-write speed for efficient training 

• sparse readability without loading the entire dataset into RAM 

• high compressibility 

• widespread adoption by the ML community 

The thorough evaluation of the different data formats and their 
impact on ML performance for all HEP experiments is in progress. 

• Strategy for bridging/migrating HEP formats to chosen ML format(s), or vice-
versa, are being envisioned.
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ML as-a-Service (MLaaS)
ML in production at scale is not only matter of software algorithms. 
Actually, it is mostly matter of infrastructure.  

MLaaS emerging also in HEP as a possible range of services that offer ML 
tools as part of cloud computing services 

• no need to install software or provision owned servers: the provider's data centres 
handle the actual computation  

Not at all widely used in HEP, but first interesting attempts by pioneering 
experiments are appearing 

• e.g. CMS has a working prototype of TensorFlow-as-a-service (TFaaS), demonstrated 
for S/B discrimination in full hadronic top analyses, for event classification, etc. 

Range of potential benefits: 

• a plethora of trained models loadable and servable upon request 

• optimal for prototyping, use of checkpoints, etc 

• an explorable “work model” for HEP: outsource the CS (ML) part of the work in a 
physics analysis team to a skilled sub-set of members + cloud resources
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Detector anomaly detection

Data taking continuously monitored by physicists taking shifts to 
monitor and assess the quality of the incoming data 

• largely using reference histograms produced by experts 

Automation may come from the whole class of “anomaly 
detection” ML algorithms  

• unsupervised algorithms able to monitoring many variables at the same time, 
learn from data and produce an alert when deviations are observed 

❖ synergy with predictive maintenance in industry: algorithms sensitive to subtle signs forewarning 
of imminent failure, so that pre-emptive actions can be scheduled 

Work in progress by various LHC experiments 
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WARNING: just one example of unsupervised..
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HEP AI?
Aka “send RAW data straight to some HEP AI and forget”? 

Agnostically, check the requirements we need to maintain: 

• ability to reformulate the problem (we do not know questions a-priori) 

• modularity, i.e. also reusability 

• interpretability 

• easy validation 

• .. 

IMO: a omni-comprehensive HEP AI is improbable, but few modular 
“intelligent” adaptive systems based on advanced ML/DL able to 
focus on some HEP tasks for everyone (i.e. cross-experiment synergy) 
is not unthinkable. 

One open (key) aspect are e.g. the systematic uncertainties..
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Systematic uncertainties

We often do not know a-priori sizes and sources of systematic 
uncertainty… 

• How can a ML algorithm be robust against systematic effects in the training 
samples, if we do not know how to transfer to it a knowledge we do not have?  

Several approaches developed within HEP so far: 

• define a physics-specific loss function that explicitly drives the ML optimisation 
to a solution that is invariant under changes in some (possibly completely 
unknown) features  

• enforce invariance using the adversarial network approach, where the 
adversary now tries to guess the value of the latent parameter 

• parametrise latent parameters such that the NN learns to smoothly interpolate 
itself as a function of the latent parameters
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[arXiV:1601.07913]



Summary
The use of ML is becoming ubiquitous in HEP 

• a rapidly evolving approach in HEP to characterising and describing data with the 
potential to radically change how data is reduced and analysed 

Applications domain varies: 

• Some will qualitatively (directly) improve the physics reach of datasets. Others will 
allow more efficient use of computing resources, thus (indirectly) extending the 
physics reach of experiments 

DL is starting to make a visible impact in HEP 

• firstly, with HEP problems that are closely related to those commonly solved using DL 

Collaboration with CS and synergy with the world-class ML community is 
vital for HEP, and a challenge in itself for both sides! 

• HEP has interesting features from a CS perspective (sparse data, irregular detector 
geometries, heterogeneous information, systematics, ..) 

• HEP should be open to other communities, and improve in how to formulate 
problems in a way CS can understand and be attracted to
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Plenty of cutting-edge very interesting work and R&D that I did not 
cover... 

• (not exhaustive list!) hardware-side of choices, deployed computing 
infrastructures for ML in HEP, tracking challenges, jet tagging with RNNs, deep 
NNs on FPGAs, Deep Kalman Filters, compression using autoencoders, 
sustainable MEM, and more…
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