HPC per la Fisica Teorica

Leonardo Cosmai INFN Bari

Istituto Nazionale di Fisica Nucleare

Workshop della Commissione Calcolo e Reti dell'INFN Hotel Ambasciatori, Rimini, 11-15 giugno 2018

• HPC@INFN-TH: scientific projects

- HPC@INFN-TH: computational resources (2018-2020,..., 2026)
- Conclusions

Scientific Projects @ INFN (Th. Physics)

16 scientific projects using HPC resources O(100) researchers (20 fellowships on HPC for Th. Physics)

Many areas of Theoretical Physics @INFN involved in HPC:

- High Energy Physics Lattice
- High Energy Physics Phenomenology
- General Relativity
- Cosmology, Astroparticle Physics
- Nuclear Physics
- Fluid Dynamics
- Disordered Systems

fellowships on HPC for Th. Physics

ASSEGNI PROGETTO HPC_HTC PER FISICA TEORICA COMPUTAZIONALE										
Tutor	Sigla	Assegnista	Area	Sezione	Durata	Cofinanziatore	Tipo di contratto	Inizio	Fine	
Alessandro Papa	NPQCD	Volodymyr Chelnokov	Lattice QCD	Cosenza/LNF	24 mesi		Assegno di ricerca	15 Febbraio 2018	14 Febbraio 2020	
Raffaele Tripiccione	FIELDTURB	Enrico Calore	Fluids	Ferrara	24 mesi	Univ. Ferrara	Contributo di 23K a Dip. Fisica Ferrara	1 Gennaio 2017	31 Dicembre 2018	
Luca Del Zanna	TEONGRAV	Antonio Graziano Pili	Numerical Relativity	Firenze	24 mesi	Univ. Firenze	Contributo di 40K a Dip. Fisica/Astronomia FI	1 Febbraio 2017	31 Gennaio 2019	
Alessandra Lanotte	FIELDTURB	Gabriella Schirinzi	Fluids	Lecce	12 mesi	INFN – Lecce	Assegno di ricerca	2 Ottobre 2017	30 Settembre 2018	
Leonardo Giusti	QCDLAT	Mattia Dalla Brida	Lattice QCD	Milano Bicocca	36 mesi	Univ. Milano Bicocca	RTDA	1 Novembre 2017	31 Ottobre 2020	
Leonardo Giusti	QCDLAT	Tim Harris	Lattice QCD	Milano Bicocca	24 mesi	Univ. Milano Bicocca	niv. Milano Bicocca Assegno di ricerca		31 Ottobre 2019	
Nunzio Itaco	STRENGTH	concorso in svolgimento	Nuclear Physics	Napoli	24 mesi	2a Univ. Napoli	Contributo di 30K a Dip. Fisica 2a Univ. Na			
Sebastiano Bernuzzi	TEONGRAV	Albino Perego	Numerical Relativity	Parma/Milan o Bicocca	24 mesi		Assegno di ricerca	1 Luglio 2017	30 Giugno 2019	
Alberto Ciampa	Zefiro Cluster		Zefiro Cluster (Pisa)	Pisa	12 mesi		Rinnovo Assegno in corso INFN Pisa	Ottobre 2016		
Massimo D'Elia	NPQCD	Davide Vadacchino	Lattice QCD	Pisa	24 mesi		Assegno di ricerca	1 Dicembre 2017	30 Novembre 2019	
Massimo D'Elia	NPQCD	Francesco Negro	Lattice QCD	Pisa	24 mesi		Assegno di ricerca	2 Dicembre 2016	1 Dicembre 2018	
Giorgio Parisi	DISCOSYNP	concorso in svolgimento	Disordered Systems	Roma Sapienza	36 mesi		Contributo di 96K per art. 29	Gennaio 2017		
Mauro Sbragaglia	FIELDTURB	Matteo Lulli	Fluids	Roma TOV	12 mesi	Univ. Roma Tor Vergata	Assegno di Ricerca Universitario bandito dall'Università degli studi di Roma "Tor Vergata"	1 Febbraio 2017	31 Gennaio 2018	
Roberto Frezzotti	LQCD123	Marco Garofalo	Lattice QCD	Roma ToV	24 mesi		Assegno di ricerca	1 Ottobre 2017	30 Settembre 2019	
Silvia Morante	BIOPHYS	Francesco Stellato	Quantitative Biology	Roma ToV	24 mesi		Assegno di ricerca	1 Gennaio 2017	31 Dicembre 2018	
Anastassios Vladikas	LQCD123	Andrew Thompson Lytle	Lattice QCD	Roma ToV	24 mesi		Assegno di ricerca	Giugno 2018 (?)	Maggio 2020 (?)	
Silvano Simula	LQCD123	Lorenzo Riggio	Lattice QCD	Roma Tre	24 mesi		Assegno di ricerca		28 Febbraio 2019	
Bruno Giacomazzo	TEONGRAV	Federico Cipolletta	Numerical Relativity	TIFPA	24 mesi		Nuovo assegno bandito da TIFPA	3 Aprile 2018	2 Aprile 2020	
Guido Boffetta	FIELDTURB	Alessandro Sozza	Fluids	Torino	12 mesi	Univ. Torino	Assegno di ricerca annuale (costo totale 240599.77 euro)	1 Gennaio 2017	31 Dicembre 2017	
Marco Panero	SFT	David Preti	Lattice QCD	Torino	24 mesi		Assegno di ricerca	1 Dicembre 2017	30 Novembre 2019	

Scientific activity presented at "SM&FT 2017" (Bari, 13-15 December 2017) <u>http://www.ba.infn.it/smft2017</u>

High Energy Physics - Lattice

Scientific Projects: LQCD123, NPQCD, QCDLAT, QFT_HEP, SFT

- Flavour physics and Standard Model precision tests
- New Physics beyond the Standard Model
- Strong interactions under extreme environmental conditions (QCD at high temperature and density)
- Computational strategies and theoretical developments
- In the next years a series of experiments will collect new data that may shed light on the Standard Model and BSM.
- The theoretical interpretation of all these data will need non-perturbative calculations with <u>accuracies far</u> <u>beyond the state of the art</u>.

High Energy Physics - Phenomenology

Scientific Projects: QCD@Colliders

Monte Carlo event generators to allow a systematic comparison between data and theory at LHC

Higher order QCD corrections and future colliders

<u>General Relativity,</u> <u>Cosmology, Astroparticle</u> <u>Physics</u>

Scientific Projects: INDARK, NEUMATT, TEONGRAV

- Numerical simulation of Binary Neutron Stars, Equation of State effects on the gravitational wave signal.
- Cosmic Microwave Background: tests of Inflation, fundamental and astroparticle Physics
- Large Scale Structure of the Universe: Dark Matter, Dark Energy, formation, growth and clustering of cosmic structures

Nuclear Physics

Scientific Projects: FBS, MANYBODY, STRENGTH

- Electron and neutrino interactions with nuclei, Equation of state of dense nuclear matter and neutrino propagation in nuclear matter, Monte Carlo techniques to compute ground- and excited-state properties of many-body systems.
- Development and application of models for nuclear structure studies: Shell Model, Density Functional Theory, Microscopic and algebraic cluster models.
- Development of accurate methods to study the bound and continuum states of few-body systems using realistic interactions.

Fluid Dynamics

Scientific Projects: FIELDTURB

G. Boffetta @ SM&FT 2017, Bari 15 December 2017

Quantitative Biology

Scientific Projects: BIOPHYS

Quantitative Biology: quantitative approaches and numerical methods to gain a deeper understanding in life sciences.

- Characterization of biomolecules and their interaction
- 3D organization and regulation of genome
- Regulatory networks of molecules, cells and neurons

10⁴ 10⁵ 10⁶

Condensed Matter

Scientific Projects: NEMESYS

Condensed matter phenomena in low dimensional systems

technological Interests (from nanoelectronics To health-care) Computational methods: Density Functional Theory (DFT), Time Dependent (TD) DFT, Many Body Perturbation Theory (MBPT)

ensembles of ultra-cold atomic gases [atomic gases in mono(bi)chromatic traps]; magnetic and spin systems

fundamental properties

(High energy physics in solidstate setting!)

topological quantum field theory on spacetime (2+1) and (1+1) manifolds; quantum Montecarlo; semiclassical multiscale approaches NEMESYS f-equilibrium,

out-of-equilibrium, nonadiabatic and excitedstate features of interacting many fermion and boson systems confined to lowdimensions electrons in honeycomb-like lattice potentials: graphene, graphene related and beyond graphene nanostructures

Huge Computatio nal Costs (10⁶ Coreh per simulation) spectral features, dielectric screening, conductivity and electromechanical properties of charge-carriers irreversible properties and quantum thermodynamics of ultra cold Fermi and Bose gases, following a change of their trapping potentials

Huge Investments (H2020 flagships for graphene and quantum

information)

A. Sindona @ SM&FT 2017, Bari 15 December 2017

Disordered Systems

Scientific Projects: DISCOSYNP

• Large scale simulations of spin glasses

- Hard spheres jamming and lowtemperature glasses
- High resolution cortical simulations in the Human Brain Project

HPC resources for the INFN-TH community

<u>(2018)</u>

CINECA-INFN agreement

MARCONI "A1" (Broadwell)

Model: Lenovo NeXtScale Architecture: Intel OmniPath Cluster Nodes: 1.512

9 Mcorehours

Processors: 2 x 18-cores Intel Xeon E5-2697 v4 (Broadwell) at 2.30 GHz Cores: 36 cores/node, 54.432 cores in total RAM: 128 GB/node, 3.5 GB/core Internal Network: Intel OmniPath Disk Space: 17PB (raw) of local storage Peak Performance: 2 PFlop/s

MARCONI "A2" (KNL)

Model: Lenovo Adam Pass Architecture: Intel OmniPath Cluster

120 Mcorehours

Nodes: 3.600 Processors: 1 x 68-cores Intel Xeon Phi 7250 CPU (Knights Landing) at 1.40 GHz Cores: 68 cores/node (272 with HyperThreading), 244.800 cores in total RAM: 16 GB/node of MCDRAM and 96 GB/node of DDR4 Internal Network: Intel OmniPath Architecture 2:1 Disk Space: 17PB (raw) of local storage Peak Performance: 11 PFlop/s

MARCONI "A3" (Skylake)

Model: Lenovo Stark Racks: 21 + Nodes: 1.512 + Processors: 2 x 24-cores Intel Xeon 8160 CPU (Skylake) at 2.10 GHz Cores: 48 cores/node, 72.576+ 38.016 cores in total RAM: 192 GB/node of DDR4

Peak Performance: about 7.50 PFlop/s

ISCRA, EU-PRACE

since 2012 ~50 projects: ~1000 Mcorehours (in BG/Q units)

<u>HPC resources for the INFN-TH community</u> (2018 sharing)

Lattice QCD and HPC

asymptotic freedom at high energies

LATTICE QCD

space-time discretisation —> lattice regularization of QCD —> non-perturbative calculations by numerical evaluation of the path integral that defines the theory

$$\langle \mathcal{O}(U,q,ar{q})
angle = (1/Z)\int [dU]\prod_f [dq_f] [dar{q}_f] \mathcal{O}(U,q,ar{q}) e^{-S_g[U]-\sum_f ar{q}_f(D[U]+m_f)q_f}$$

Lattice QCD Simulations as an HPC

<u>challenge</u>

ideal case of the parallel computation paradigm !

• **Monte Carlo methods** to numerically evaluate the functional integrals

• **Locality:** (property of the field theoretic description of fundamental interactions)

- the numerical operations at a site n can be carried out independently of those at a site m unless the pair is within the limited neighborhood of each other;
- calculations by a given processor can be carried out independently of those by the other processors, except that the processors with overlapping boundaries have to exchange values of fields in the boundaries before and/or after the calculations in each sub lattice;
- for a fixed lattice size, <u>the computation time can be reduced by a factor NP</u>, and for a fixed sub-lattice size, one can enlarge the total lattice size proportionately to the number of processors NP without increasing the computation time.

Lattice QCD and parallel computers building

	name	year	authors	peak speed
	Columbia	1984	Christ-Terrano	_
	Columbia-16	1985	Christ et al	0.25 GFlop/s
	APE1	1988	Cabibbo-Parisi	1 GFlop/s
	Columbia-64	1987	Christ et al	1 GFlop/s
	Columbia-256	1989	Christ et al	16 GFlop/s
	ACPMAPS	1991	Mackenzie et al	5 GFlop/s
	QCDPAX	1991	Iwasaki-Hoshino	14 GFlop/s
	GF11	1992	Weingarten	11 GFlop/s
	APE100	1994	APE Collab.	0.1 TFlop/s
	CP-PACS	1996	Iwasaki et al	0.6 TFlop/s
	QCDSP	1998	Christ et al	0.6 TFlop/s
•	APEmille	2000	APE Collab.	0.8 TFlop/s
•	apeNEXT	2004	APE Collab.	10 TFlop/s
	QCDOC	2005	Christ et al	10 TFlop/s
	PACS-CS	2006	Ukawa et al	14 TFlop/s
	QCDCQ	2011	Christ et al	500 TFlop/s
	QPACE	2012	Wettig et al	200 TFlop/s

<u>HPC@INFN-Th (2018-2020)</u>

"Computational theoretical physics at INFN status and perspectives (2018-2020)"

https://drive.google.com/file/d/0BzOFbH1uCRZ1Y09CUHJUdlBJUUU/view?usp=sharing

Year	2018	2019	2020		
LGT: hadron physics	54	108	180		HPC-TH@INFN 2018-2020 (units are Mcorehours)
LGT: QGP and BSM	207	432	648		
LGT: flavor physics	117	234	387		
Colliders Phenomenology	1	2	3	2500	
General Relativity	142	182	227		
Cosmology and Astroparticle Physics	3	4	6		
Nuclear Theory	18	27	36		
Fluid Dynamics	50	80	110		
Quantitative Biology	9	18	27	2000	
Disordered systems	4	6	8		
Condensed matter	2	4	6		
Total (Mcorehours)	607	1097	1638		
Total (PFlop/s)	4.6	8.4	12.5		
				1000	
				500	
				LATTICE QCD	COLLIDER PHEN NUM REL NUCL TH FLUID DYN BIOPHYS COND MAT DISORDERED

The next 8 years...

The next 8 years...

	Table 1 of Ref.[2]			power increase 2.6 every 3 years				power increase 4.5 every 3 years				power increase 5.2 every 3 years			
Year	2018	2019	2020	202	2 2024	2026	Γ	2022	2024	2026		2022	2024	2026	
LGT: hadron physics	54	108	180	34	4 658	1258		489	1329	3612		540	1623	4873	
LGT: QGP and BSM	207	432	648	123	9 2368	4527		1761	4785	13003		1946	5843	17544	
LGT: flavor physics	117	234	387	74	0 1414	2704		1052	2858	7765		1162	3489	10478	
Colliders Phenomenology	1	2	3		6 11	21		8	22	60		9	27	81	
General Relativity	142	182	227	43	4 830	1586		617	1676	4555		682	2047	6146	
Cosmology and Astroparticle Physics	3	4	6	1	1 22	42		16	44	120		18	54	162	
Nuclear Theory	18	27	36	6	9 132	252	Γ	98	266	722		108	325	975	
Fluid Dynamics	50	80	110	21	0 402	768		299	812	2207		330	992	2978	
Quantitative Biology	9	18	27	5	2 99	189		73	199	542		81	243	731	
Disordered systems	4	6	8	1	5 29	56		22	59	161		24	72	217	
Condensed matter	2	4	6	1	1 22	42		16	44	120		18	54	162	
Total (Mcorehours)	607	1097	1638	313	1 5986	11443		4451	12095	32868		4918	14769	44347	
Total (PFlop/s)	4.6	8.4	12.5	23	9 45.8	87.5		34.0	92.5	251.4		37.6	113.0	339.2	

Conclusions

- It is crucial for the theoretical computational physics community to have at disposal in the next years enough computing power to address new and challenging physics problems.
- Estimate of HPC resources to pursue the scientific projects at an international competitive level:

years	CP	U (PFlo	p/s)	Storage (PBytes)					
	min		max	min		max			
2018		4.6			1.0				
2019		8.4			1.6				
2020		12.5			2.7				
2022	23.9	34.0	37.6	5.2	7.4	8.2			
2024	45.8	92.5	113.0	9.9	20.1	24.5			
2026	87.5	251.4	339.2	19.0	54.5	73.6			

- Establish stronger scientific and institutional links with CINECA, with the goal of playing an active role in the definition of the computational requirements of the future HPC systems that CINECA plans to install.
- Make sure that the HPC computational skills needed to efficiently use current and future supercomputers are mastered by the community. This is best done supporting a specific programme of post-doc grants.