Geiger-mode APDs (2)

Masashi Yokoyama 横山 将志

Department of Physics, University of Tokyo

I Seminario Nazionale Rivelatori Innovativi Nov.30-Dec.4, 2009, INFN/LNF

Plan for today

- I. Basic performance (cont.)
 - Dark noise, cross-talk, afterpulsing
- 2. Radiation damage

Parameters and performance (cont.)

4. Test with spot laser system

Injected p.e.

Inject pulsed laser (859nm, 50ps) onto a 100 pixel MPPC

3.1 Position dependence of efficiency in a micro-pixel

M.Yokoyama, poster at SNIC06 (Apr. 06) arXiv: physics/0605241

Pulse shape and recovery

- Signal 'rise time' usually very fast (~a few ns).
- Fall time / pixel recovery time determined by recharging through RC.
 - Larger pixel size = large C, longer recovery

Masashi Yokoyama, University of Tokyo

Timing resolution

- Fast breakdown process in thin (a few µm) multiplication layer.
 - Timing resolution expected to be good even with single photon.

S.Korpar, PD09

Masashi Yokoyama, University of Tokyo

Masashi Yokoyama, University of Tokyo

Performance

- Discussed yesterday: signal generation
 - Gain, PDE, timing, recovery
- Today: other effects
 - Dark noise, cross-talk, afterpulse
 - Temperature dependence of parameters
 - Radiation damage

Masashi Yokoyama, University of Tokyo

Geiger-mode APDs

Talking about the dark side of device...

Dark noise

Dark noise

- Avalanche can be triggered by *any* generation of free carriers, not only by photon injection.
 - Thermally generated carriers gives a dominant contribution to the dark rate at room temperature.
 - Dark noise gives signal identical to the photon-triggered avalanche.
- Typical rate:
 ~I00kHz-IMHz/mm² at 25°C with 0.5 'pe' threshold.

Dark noise rate

- Measured with scaler
- Ip.e. noise dominates
- Dark noise more than
 I p.e. created with crosstalk

Dark noise

 Dark noise rate can be reduced by lowering temperature: ~1/2 every -8°C.

Dark noise rate

- Thermal generation of carriers
 volume of depleted region
- Electrons more efficient to avalanche than holes
 - p-type: electron drifts to high field region
 - n-type: hole drifts
- Smaller p-type volume results in smaller dark noise rate

Structure revisited

p-on-n Shallow p region ⇒ smaller noise rate possible

Masashi Yokoyama, University of Tokyo

Geiger-mode APDs

n-on-p

Dark noise rate: prospects

- Dark noise rate suppression needs minimization of impurities/crystal defects.
 - Hard to control beyond some level.
- One of major limitations to realize large area device.
 - Some innovation necessary for dramatic suppression of the rates.

Optical cross-talk

Optical photon generation in avalanche breakdown

- Avalanche makes
 3photons / 10⁵ carriers*
 - They can trigger a breakdown when entering neighboring pixel
 optical cross-talk
 - A stochastic process, increases excess noise factor.

* A. Lacaita et al., IEEE Trans. Electron. Dev. **40**, 577 (1993).

S. Cova et al., J. Modern Opt. **51**, 1267 (2004) A. Ingargiola, NDIP08

Optical cross-talk

- ~850-1100nm is critical wavelength (N. Otte, NDIP08)
 - Shorter wavelength: absorbed in the same pixel
 - Longer wavelength: not absorbed

Voltage dependence

- With higher voltage,
 - High gain \rightarrow more photon created
 - High PDE → more probability of breakdown
 - Both depends on ΔV \rightarrow quadratic function of ΔV

Optical cross-talk

S. Gomi, master's thesis Kyoto U (2008)

Cross-talk of MPPC, measured with scaler

Masashi Yokoyama, University of Tokyo

Possibility of cross-talk suppression

K.Yamamoto @ PD07

Masashi Yokoyama, University of Tokyo

Cross-talk suppression

- Promising result reported from MEPhI/Pulser/MPI group with optical isolation.
- Isolation requires additional dead area -- needs optimization

P.Buzhan et al., NIM A567 78 (2006)

Masashi Yokoyama, University of Tokyo

Geiger-mode APDs

I Seminario Nazionale Rivelatori Innovativi 23

Afterpulsing

After-pulse

- Carrier trapped in impurity state may be released after certain time and cause delayed avalanche in the same pixel, or after-pulse
- Typical timescale in room temp: 100ns
- Also increases excess noise factor

Afterpulse

Masashi Yokoyama, University of Tokyo

You can also see the effect of recovery.

Masashi Yokoyama, University of Tokyo

Geiger-mode APDs

I Seminario Nazionale Rivelatori Innovativi 27

T/V dependence

- Probability of afterpulsing depends on ΔV .
 - Higher field results in more carrier (gain).
- Temperature also affects the release time of the trap.
 - Lower temperature makes the trap release time longer.

Temp. dependence

Masashi Yokoyama, University of Tokyo

After-pulse suppression

- One possibility is to make recovery time longer with e.g. larger quenching register. (no afterpulsing before recovery)
 - Confirmed with test sample.
 - Dead time also increases.
- Again, control of impurity gets difficult beyond certain level.
- Innovation?

Temperature dependence

- Already mentioned temperature / voltage dependence in several points.
- As this is one of major issue in operation, summarizing the situation here.
- NB: Discussion here is for MPPC. Other devices may have different dependence. (some will be shown later)

T/V dependence

• Gain, PDE, cross-talk, afterpulsing known to (to the first order) dependent only with ΔV .

Masashi Yokoyama, University of Tokyo

T/V dependence

 V_{bd} depends on temperature (~50mV/K for MPPC).
 →ΔV changes if V is constant.

- Around $\Delta V = IV$ (typical operation V in T2K), I°C corresponds to 5% change in ΔV (= thus gain).
 - Note PDE, cross-talk also changes
 → output charge for same light changes more!
 - Main issue of calibration in real use.

Masashi Yokoyama, University of Tokyo

Dark noise rate

• Dark noise rate is known not to follow ΔV dependence.

Dark noise rate as a function of V (left) and ΔV (right)

By S. Gomi (Kyoto)

Radiation effects

Radiation damage of Si

- Two major effects:
 - Si bulk defects
 - Change effective doping density
 - Increase charge traps
 - Si-SiO₂ interface damage
 - Increase impurity states at interface
- May change V_{bd}, leak current, gain, noise, PDE, ...

Radiation effects study

Studied with irradiation of

Masashi Yokoyama, University of Tokyo

Y-ray irradiation

- Leakage current after every 40Gy irradiation cycle
- Annealing observed

Masashi Yokoyama, University of Tokyo

Y-ray irradiation

- Tested upto 240Gy (⁶⁰Co).
- Effect on Si/SiO₂ interface. (small bulk effect)

T. Matsubara @PD07 Picture with infrared camera

Masashi Yokoyama, University of Tokyo

Just after voltage supplied

After 5 min.

After 10 min.

T. Matsubara @PD07

Masashi Yokoyama, University of Tokyo

Y-ray irradiation T. Matsubara

@PD07

Noise rate vs Bias voltage

Crosstalk vs Bias voltage

Proton irradiation

T. Matsumura et al., NIM A 603, 301 (2009)

• Bulk damage \rightarrow defect \rightarrow dark current

Masashi Yokoyama, University of Tokyo

Proton irradiation

gate width : 55 ns Noise-rate measurements were limited due to scaler performance T. Matsumura @PD07

• Photon-counting capability is lost due to baseline shifts and noise pile-up after 21 Gy irradiation.

Masashi Yokoyama, University of Tokyo

Geiger-mode APDs

I Seminario Nazionale Rivelatori Innovativi 43

Gain after proton irrad.

- No significant change (<3%) at normal operation point after 8Gy.
- Difficult to evaluate at higher V due to large noise.
 - T. Matsumura et al., NIM A 603, 301 (2009)

Proton irradiation: after 1 year

- Measurement 430 days after irradiation.
- Gain/PDE look the same as the nonirradiated reference.

T. Matsumura et al., NIM A 603, 301 (2009)

Masashi Yokoyama, University of Tokyo

Neutron irradiation

- Consistent result with on proton irradiation.
- Bulk damage with non-ionization energy loss.

Bulk damage

- Peak structure lost ~10¹⁰ IMeV n equiv /cm².
- Gain/PDE look the same upto 10¹¹ n/cm².
- So far, no clear answer to how to improve it (as far as I know)
 - Study needed for use in high radiation environment (e.g. Super-B).
 - cf. 2-20×10¹¹ n/cm² expected for Belle-II PID.

Long term stability

- MPPCs tested with acceleration by heat (~80°C)
- Study in Russia (INR): heated for ~1 month, no change in performance

O. Mineev et al., NIMA **557**, 540 (2007)

- Same for MRS-APD
- Another study in US (LSU)
 - Heat cycle (80°C/20°C) every ~12 hr, no change after more than I year

Masashi Yokoyama, University of Tokyo

Robustness

- Among >60,000 MPPCs produced for T2K, O(0.1)% is broken after shipment (mostly by mishandling by students and professors)
- Tested against strong light (direct exposure to sunshine made no damage)

Summary and next

- Today's topics
 - Dark noise, cross-talk, afterpulse
 - Radiation damage
- Tomorrow: practical issues
 - Example of major application:T2K
 - Testing large number of devices
 - Operation experience
 - Other applications
 - Device variation on the market
 - Future developments

Masashi Yokoyama, University of Tokyo