

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

MICRO-PATTERN GAS DETECTORS

PART ONE: BASIC PRINCIPLES

Fabio SAULI TERA Foundation CERN CH-1211 GENEVA SWITZERLAND

PRIMARY INTERACTIONS

ELECTROMAGNETIC (COULOMB) INTERACTIONS: Elastic collisions, Excitations, Ionizations

PHYSICAL PROPERTIES OF GASES AT STP:

Differential energy loss, primary and total ionization for minimum ionizing, z=1 particles

 E_x , E_i : first excitation and ionization potentials w_i : average energy per ion pair

 N_P , N_T : primary and total ion pairs/cm²

Gas	$ \begin{array}{c} {\rm Density,} \\ {\rm mgcm^{-3}} \end{array} $	$E_x eV$	E_I eV	$W_I \ { m eV}$	$\frac{dE/dx}{\min}$ keV cm ⁻¹	${mP}_{ m cm^{-1}}$	${m_T \over { m cm}^{-1}}$
Ne	0.839	16.7	21.6	30	1.45	13	50
\mathbf{Ar}	1.66	11.6	15.7	25	2.53	25	106
Xe	5.495	8.4	12.1	22	6.87	41	312
CH_4	0.667	8.8	12.6	30	1.61	37	54
C_2H_6	1.26	8.2	11.5	26	2.91	48	112
iC_4H_{10}	2.49	6.5	10.6	26	5.67	90	220
$\rm CO_2$	1.84	7.0	13.8	34	3.35	35	100
CF_4	3.78	10.0	16.0	54	6.38	63	120

The Review of Particle Physics C. Amsler et al., Physics Letters B667 (2008) 1 http://pdg.lbl.gov/

PRIMARY AND SECONDARY IONIZATION

PRIMARY IONIZATION

TOTAL IONIZATION: Clusters and delta electrons

 $P_k^n = \frac{n^k}{k!} e^{-n}$ n: average k: actual number Minimum ionizing particles in Argon STP: dE/dx: 2.4 keV/cm n_p: 25 ion pairs/cm **Detection efficiency:** Argon NTP: $\frac{s (mm)}{1}$

 $\varepsilon = 1 - P_0^n = 1 - e^{-n}$

$\frac{s (mm) \epsilon (\%)}{1 91.8}$ 2 99.3

CLUSTER SIZE PROBABILITY :

H. Fischle et al, Nucl. Instr. and Meth. A301 (1991) 202 Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

ELECTRONS ENERGY DISTRIBUTION:

electron range in gases

E (keV)

10

ELECTRON RANGE IN GASES AT STP:

http://physics.nist.gov/PhysRefData/Star/Text/contents.html

MONTECALO CALCULATION OF IONIZATION ENERGY LOSS OF IONIZING PARTICLES

I. B. Smirnov, Nucl. Instr. and Meth. A554(2005)474

http://consult.cern.ch/writeup/heed/

DETECTION OF PHOTONS

A. Thompson et al, X-RAY DATA BOOKLET (2001)

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

PHOTOIONIZATION CROSS SECTION FOR XENON:

http://xdb.lbl.gov/ http://henke.lbl.gov/optical_constants/ http://physics.nist.gov/PhysRefData/FFast/html/form.html

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

M. O. Krause, J. Phys. Chem. Ref. Data 8 (1979) 307

X-RAY ABSORPTION SPECTRUM ⁵⁵Fe X-Rays (5.9 keV) in Argon:

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

DRIFT AND DIFFUSION

$\mathbf{E} = \mathbf{0}$

Maxwell energy distribution:

E > 0 CHARGE TRANSPORT AND DIFFUSION

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

IONS MOBILITY IN GAS MIXTURES

GAS MIXTURES:

WHICH IONS ARE DRIFTING?

Collisional charge transfer process:

$$A^+ B \rightarrow A B^+ \quad if \quad E_i(B) \le E_i(A)$$

BLANC'S LAW

$$\frac{1}{\mu(I^+, M_1 M_2 \dots M_i)} = \sum_i \frac{P(M_i)}{\mu(I^+, M_i)}$$

 $\mu(I^+, M_i)$: mobility of ion I⁺ in gas M_{ii}

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

DRIFT VELOCITY:

A. Peisert and F. Sauli, drift and Diffusion of Electrons in Gases: a compilation CERN 84-08 (1984)

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

DIFFUSION:

LONGITUDINAL AND TRANSVERSE DIFFUSION

H. Drumm et al, Nucl. Instr. and Meth. 176(1980)333

ELECTRON-MOLECULE CROSS SECTIONS:

MAGBOLTZ: Montecarlo program to compute electron drift and diffusion

S. Biagi, Nucl. Instr. and Meth. A421(1999)234

http://rjd.web.cern.ch/rjd/cgi-bin/cross

DRIFT VELOCITY IN ARGON-METHANE MIXTURES:

longitudinal diffusion gases transv diff gases thick 1000 1000 $\sigma_{\rm T}$ for 1 cm (μ m) 800 800 Ar for 1 cm (µm) 600 600 Ar Ar-CH₄ 90-10 Ar-CH, 90-10 400 400 Ar-CO₂ 90-10 ь_ Ar-CO₂ 90-10 År-CO₂ 70-30 Ar-CO₂ 70-30 200 200 CO₂ 0 0 10³ 10⁴ 10² 1 10² 10³ 10⁵ 10⁴ E (V/cm) E (V/cm)

TRANSVERSE DIFFUSION:

LONGITUDINAL DIFFUSION:

http://consult.cern.ch/writeup/garfield/examples/

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

EQUAL FIELD, DIFFERENT GASES:

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

E // B (TIME PROJECTION CHAMBERS):

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

ELECTRON ATTACHMENT CROSS SECTIONS IN OXYGEN:

http://consult.cern.ch/writeup/magboltz/cross/

HIGH ELECTRIC FIELD: EXCITATION AND CHARGE MULTIPLICATION

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

 $A+B^++e$

A+A+ hv

A⁺+e+e

SECONDARY COLLISION PROCESSES IN GAS MIXTURES

1) A+e	⇒	A++e+e	lonisation by electronic impact.	MAJOR PROCESSES:				
2) A+e	⇒	A*+e	Excitation by electronic impact.					
3) A*+e	⇒	A+e	Deexcitation by electronic collision.					
 4) A+hv 5) A* 6) A+hv 7) A*+e 8) A*+B+e 	1 1 1 1 1	A* A+hv A⁺+e A+hv A+B	Photo-excitation (absorption of light). Photo-emission (radiative deexcitation). Photoionisation. Radiative recombination. Three body recombination.	PROCESS Excitation Ionization De-excitation	A+e A+e A^*+e	A^*+e A^++e+ A+e		
9) $A^{*}+B$ 10) $A^{*}+B$ 11) $A^{+}+B$ 12) $A^{+}+B$ 13) $A+B$ 14) $A+B$ 15) $A+e$ 16) A^{-} 17) $A^{**}+A$ 18) $A^{+}+2A$ 19) $A^{*}+A+A$ 20) A_{2}^{*}	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A+B* A+B++e A+B+ A++B++e A*+B A++B+e A- A+e A_2+e A_2^++e A_2^++A A_2^++A A+A+hv	Collisional deexcitation. Penning effect. Charge exchange. Ionisation by ionic impact. Excitation by atomic impact. Ionisation by atomic impact. Formation of negative ions. Electrons release by negative ions. Associative ionisation. Molecular ion formation. Excimer formation. Radiative excimer dissociation.	Photo-excitation Photo-ionization Photo-emission Electron capture Radiative recombination Excimers formation Radiative excimer dissociation Collisional de-excitation Charge exchange Penning effect	$A+h\upsilon A+h\upsilon A* A++e A*++e A*++A+A A_2 A*+B A*+A A*+B $	A* A++e A+hv A- A+hv A2*+A A+2*+A A+A+ A+B* A+B* A+B+		
21) (XY)* 22) (XY)++e	⇒ ⇒	X+Y* X+Y*	Dissociation. Recombinational dissociation					

J.Meek and J. D. Cragg, Electrical Breakdown of Gases (Clarendon Press, Oxford 1953)

S.C. Brown, Basic Data of Plasma Physics (MIT Press, 1959)

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

Mean free path for ionization:

CHARGE MULTIPLICATION IN UNIFORM FIELD

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

IONIZATION CHAMBER: SIGNAL DEVELOPMENT BY A MOVING CHARGE +Q

Charge induced on each electrode by +Q moving through the difference of potential dV:

$$dq = Q\frac{dV}{V_0} = Q\frac{ds}{s_0}$$

Integrating over s (or time t):

$$q(s) = \frac{Q}{s_0}s \qquad q(t) = \frac{Q}{s_0}wt \qquad i(t) = \frac{dq}{dt} = \frac{Q}{s_0}w$$

Electrons- ion pair (-Q and +Q) released at the same distance s from the cathode :

$$q(t) = Q\left(\frac{w^{-}t}{s_0} + \frac{w^{+}t}{s_0}\right) \quad 0 \le t \le T^{-}$$
$$q(t) = Q\left(\frac{s - s_0}{s_0} + \frac{w^{+}t}{s_0}\right) \quad T^{-} \le t \le T^{+}$$

 $w^{-}(w^{+})$: electron (ion) drift velocity $T^{-}(T^{+})$: total electron (ion) drift time (+Q on cathode, -Q on anode)

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

PARALLEL PLATE COUNTERS: SIGNAL DEVELOPMENT WITH CHARGE MULTIPLICATION

Increase in the number of charges after a path ds is:

$$dn = n\alpha ds$$
 $n = n_0 e^{\alpha s}$

Charge induced by electrons: $dq^- = -en_0 e^{\alpha s} \frac{ds}{s_0}$

$$q^{-}(s) = \frac{en_0}{\alpha s_0} (e^{\alpha s} - 1) \approx \frac{en_0}{\alpha s_0} e^{\alpha s} = \frac{en_0}{\alpha s_0} e^{\alpha w^{-}t}$$
$$i^{-}(t) = \frac{dq^{-}}{dt} = \frac{en_0 w^{-}}{s_0} e^{\alpha w^{-}t} = \frac{en_0}{T^{-}} e^{\alpha w^{-}t}$$

Current signal induced by ions:

$$i^{+}(t) = \frac{en_{0}}{T^{+}} \left(e^{\alpha w^{-}t} - e^{\alpha w^{*}t} \right) \quad 0 \le t \le T^{-}$$
$$i^{+}(t) = \frac{en_{0}}{T^{+}} \left(e^{\alpha s} - e^{\alpha w^{*}t} \right) \quad T^{-} \le t \le T^{+}$$
$$\frac{1}{w^{*}} = \frac{1}{w^{+}} + \frac{1}{w^{-}}$$

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

SINGLE ELECTRON AVALANCHE MULTIPLICATION

In constant electric field, the probability of an avalanche started by a single electron to have a size *N* is given by (Furry's law):

$$P(N) = \frac{1}{\overline{N}}e^{-\frac{N}{\overline{N}}}$$
 $\overline{N} = e^{\alpha s}$ s: gap

maximum probability for N=0 (no multiplication!).

At large gains (high fields) the avalanche distribution is described by a Polya function:

EXPERIMENTAL AVALANCHE SIZE DISTRIBUTION AT INCREASING FIELDS:

H. Sclumbohm, Zeit. Physik 151(1958)563

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

THIN ANODE WIRE OF RADIUS a, COAXIAL WITH A CYLINDRICAL CATHODE OF RADIUS b

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

AVALANCHE DEVELOPMENT AROUND THIN WIRES:

Fabio Sauli - Seminario Nazionale Rivelatori Innovativi (Frascati, 30.11-4.12.2009)

TIME DEVELOPMENT OF THE SIGNALS

$$q(t) = -\frac{QC}{2\pi\varepsilon_0} \ln\left(1 + \frac{\mu^+ CV_0}{2\pi\varepsilon_0 a^2}t\right) = -\frac{QC}{2\pi\varepsilon_0} \ln\left(1 + \frac{t}{t_0}\right) \qquad \qquad i(t) = -\frac{QC}{2\pi\varepsilon_0} \frac{1}{t_0 + t}$$

S. C. Curran and J. D. Craggs, Counting Tubes (Butreworth 1949) F. Sauli, Principles of Operation of Multiwire Proportional and Drift Chambers (CERN 77-09)