(a.k.a."SiPM") (1)

Masashi Yokoyama 横山 将志

Department of Physics, University of Tokyo

I Seminario Nazionale Rivelatori Innovativi

Nov.30-Dec.4, 2009, INFN/LNF

Plan of this lecture

- I. Basic principle and performance of "SiPM"
- 2. Applications (HEP, nuclear/astro/medical)
 - Experience of using 60,000 MPPCs for T2K experiment
- 3. Future developments

Plan for today

- I. Introduction
 - Photon detectors
- 2. Operation principle
 - From PD, APD to "SiPM"
- 3. Key parameters and performance
 - Signal generation

Introduction

Photon detectors

- Needless to say,
 - detection of photon is an important, elementary part of particle detection in a very broad field of application.

Photon detecto Management of the control of the con

ph art or particle dete eld of application.

Photon detectors

- Convert light to electric signal, with:
 - High efficiency
 - Multiplication: for detection of weak light (single photon in many cases).
 - Proportionality: need to know amount of light injected.

PMT (photomultiplier tube)

- Most commonly used in the field.
- Various types available depending on purpose.
 (size, sensitive wavelength, timing resolution, ...)

Geiger-mode APDs

Great success of PMT

- PMTs are great device with excellent performance.
- To date, no device has performance to completely replace PMTs.
- However, recent development has yielded an interesting device, that is...

"Silicon Photo-multiplier"

- Known in many many names...
 - SiPM
 - MRS-APD
 - SPM
 - MPGM APD
 - AMPD
 - GM-APD
 - MPPC
 - •

Reflecting <u>progress in many places in short time</u>.

*Key development in Russia in 90s, by Golovin, Sadygov, et al.

R&D over the world

Some (many) very likely missing..

Why so interesting?

- Many advantages:
 - High (10^5-10^6) gain with low voltage (<100V)/power
 - High photon detection efficiency
 - Compact and robust
 - Insensitive to magnetic fields
- Although as many possible drawbacks (at this moment):
 - Only small size (typically ~mm²) available
 - High dark count rate (100kHz-1MHz/mm²)
 - Optical cross-talk and after-pulse

•

That's why I am giving this talk...

Operation Principle

from basics of semiconductor photodetector

Photo absorption in Si

Photodiode

- p-n or p-i-n structure
- Photon creates electron hole pair near the surface
- Under reverse bias voltage, they can reach electrodes before recombination and give current proportional to the light intensity
- No amplification

Ionization rate

Avalanche Photodiode (APD)

- Avalanche amplification in reverse-biased region
- Linear operation below breakdown voltage (V_{bd}): output charge ∝ number of e-h pairs ∝number of incident photons
 - Typical internal gain: 10-100 (~1000 in extreme case)

Schematics of APD for CMS-ECAL

- Operation above the breakdown voltage
- Discharge 'quenched' by external register
- High internal gain
- Binary device
 - Same amount of charge regardless of number of incident photons
 - No proportionality

- Operation above the breakdown voltage
- Discharge 'quenched' by external register
- High internal gain
- Binary device
 - Same amount of charge regardless of number of incident photons
 - No proportionality

- Operation above the breakdown voltage
- Discharge 'quenched' by external register
- High internal gain
- Binary device
 - Same amount of charge regardless of number of incident photons
 - No proportionality

Counting Photons with Geiger-mode APDs

20-100μm (typ.)

- Divide APD into many small pixels.
 - Each pixel works independently in Geiger mode.
- Incident photon 'fires' an APD pixel but not others
 - Output charge from one pixel: $Q=C_{pixel} \cdot (V_{op}-V_{bd})$
 - $C_{pixel} \sim 10-100 \text{fF}$ and $\Delta V = V_{op} V_{bd} \sim 1-2 \text{V}$ gives $Q \sim 10^5 10^6 \text{e}$

Operation of Multi-pixel Geiger-mode APDs

- All the pixels are connected in parallel
 - Taking sum of all pixels, one can know how many pixels are fired

 — how many photons are incident!

Output from Multi-pixel Geiger-mode APD

ADC count

Clear separation of

1,2,3... photoelectron (p.e.) peaks!

[@ room temperature]

Types of G-APDs

- CPTA/Photonique (Moscow and Geneva)
- MEPhl/Pulsar (Moscow, Russia)
- Amplification Technologies (Orlando, USA)
- Hamamatsu Photonics (Hamamatsu, Japan)
- SensL (Cork, Ireland)
- RMD (Boston, USA)
- MPI Semiconductor Lab. (Munich, Germany)
- FBK-irst (Trento, Italy)
- ST-Microelectronics (Catania, Italy)
- •.....
- Z. Sadygov (JINR, Dubna, Russia)

Zecotek (Singapore)

D.Renker, PD09

Comparison of photo-sensors

	PMT	APD	`SiPM'
Gain	106-107	~100	$10^{5}-10^{6}$
Operation voltage(V)	I-2k	300-500	<100
Active area	~>100cm ² ~10mm ² ~11		~Imm²
Dark count (Hz)	<ik< td=""><td></td><td>0.I-IM</td></ik<>		0.I-IM
Photon detection efficiency (blue-green)	20-30%	75-80%	20-50%
Magnetic field	X	0	O tested to 7T

Example: Hamamatsu MPPC

MPPC by Hamamatsu

- Structure based on CMS-APD
 - n+-substrate
 - Lower noise
 - Sensitivity to short wavelength
- Currently on catalogue:
 - IxI/3x3 mm² active area
 - 25/50/200 μm pixel pitch
 - Metal/ceramic package or surface mounted

MPPC lineup

Line up of MPPC

Jun 2009

1mm□,TE-cooled type

3mm□, CERAMIC,SMD

S10362-33 series

3mm□-2x2ch array

S10931(X) series

S11028(X) series

1mm□-4ch array

S10984(X) series

4

S10985(X1) series

3mm□-4x4ch array

K. Yamamura, PD09

Catalogue spec

■ Electrical and optical characteristics (Typ. Ta=25 °C, unless otherwise noted)

Parameter Symbol	Cumbal	S10362-11			Unit
	Symbol	-025U, -025C, -025P	-050U, -050C, -050P	-100U, -100C, -100P	Unit
Fill factor *1	-	30.8	61.5	78.5	%
Spectral response range	λ	320 to 900			nm
Peak sensitivity wavelength	λр	440			nm
Photon detection efficiency *2 (λ=λp)	PDE	25	50	65	%
Operating voltage range	-	70 ± 10 *3			V
Dark count *4	-	300	400	600	kcps
Dark count Max. *4	-	600	800	1000	kcps
Terminal capacitance	Ct	35			pF
Time resolution (FWHM) *5	-	200 to 300			ps
Temperature coefficient of reverse voltage	-	56			mV/°C
Gain	М	2.75 × 10 ⁵	7.5 × 10 ⁵	2.4 ×10 ⁶	-

Parameters and performance

Basic response (signal generation)

Gain

$$Q = \sum C(V-V_{bd}).$$

- C: capacitance of one pixel
- V: applied voltage
- V_{bd}: breakdown voltage.
 - V-Vbd called 'overvoltage (ΔV)'.
- Gain = $Q/e : 10^5-10^7$. simple or no amplifier required.

High gain

- Large amplification in thin layer
 - No nuclear counter effect.
 - Charged particle produces just Ipe equivalent charge.
 - No avalanche fluctuation.
 - Small excess noise factor (in principle, see later discussion) in contrast to APD.

Gain&Vbd: most basic parameters

 Gain of MPPC can be measured with wellseparated p.e. peaks: Gain=Q/e

 Using linear relation, breakdown voltage (V_{bd}) also derived

Measured gain

- MPPC has >>10⁵
 gain at room
 temperature,
 with V<<100V.
- Gain is (linearly)
 dependent on
 ΔV.
 - dM/dV~X%.

Gain (10⁵)

Temperature dependence

(Also many measurements around room temperature)

- Many parameters of MPPC are known to depend on 'over-voltage' △V≡V-V_{bd}
- V_{bd} linearly depends on temperature dVbd/dT~-50mV/K

Linearity / saturation

- If more than one photon enter the same pixel, it gives only signal equal to that of one photon.
- The output signal is proportional to the number of *fired* pixel, when the number of incident photon is small.

 $f(x)=N_{pix}\times[1-exp(N_{inc}\cdot PDE(1+c)/N_{pix})]$

c: cross-talk and afterpulse

Photon detection efficiency (PDE)

- PDE consists of three factors:
 - Geometrical factor (fill factor): ε_{geom}
 - → Determined by design
 - Quantum efficiency : QE
 - →Dependent on wavelength
 - Avalanche trigger probability : ε_{trig}
 - → Dependent on overvoltage

Geometric fill factor

- Determined by the design
 - Need some space for isolation, resistors, ...
 - Smaller pixel means less active region
- 30.8/61.5/78.5 % for 25/50/100µm MPPC

S.Korpar, PD09

QE

 QE for APD can be as high as 80-90%.

Trigger probability

- E_{trig} depends on the position where carrier is created.
- Electron has better probability to trigger a breakdown.
- Photon converted in p-layer has larger ε_{trig} .
- Wavelength dependence determined by structure.

Structure

p-on-n
Shallow p region
⇒ blue sensitive

n-on-p
deep p region
⇒ red sensitive

PDE from MPPC catalogue

Includes crosstalk & afterpulse (20-30% overestimate)

PDE

- Avalanche triggering probability ϵ_{trig} has large dependence on ΔV .
- It makes the overall PDE dependent on ΔV .
- Large ΔV gives better PDE, but limitation due to dark count, cross-talk, afterpulse (discussed later).

MY, NDIP08

Pixel size: consideration

- Larger pixel gives better PDE. (fixed area of dead region)
 - Total area limited by dark count rate
 - → number of pixel smaller
 - → saturation against large number of photons.
- Tradeoff b/w PDE and linearity.

Pulse shape and recovery

- Signal 'rise time' usually very fast (~a few ns).
- Fall time / pixel recovery time determined by recharging through RC.
 - Larger pixel size = large C, longer recovery

Timing resolution

- Fast breakdown
 process in thin (a few
 µm) multiplication
 layer.
 - Timing resolution expected to be very good even with single photon.

S.Korpar, PD09

For improvement of timing resolution

< Equivalent circuit of MPPC by Otono et al.>

Suppose Vd down to Vbr

Imax =
$$\frac{1}{Rq}$$

$$2 = Imax \left\{ 1 - exp \left[-\frac{t - t0}{Cd \cdot Rd} \right] \right\}$$

$$3 = Imax \left\{ exp \left[-\frac{t - t1}{Cd \cdot Rq} \right] \right\}$$

Add Cq effect, pulse height is larger as spike shape

Actual device has trace resistance (Rtr)

For good timing resolution,

- < Each pixel >
- 1) Better to large Imax $\Delta V \text{ (Vop-Vbr)} \Rightarrow \text{larger}$
- 2) Better to small rise time Cd ⇒ smaller
- Better to large Cq effect
- < Whole pixels >
- Better to small and uniform Rtr
- Pixel characteristic(GAIN, Rq,Cq,Rd,Cd,···) should be uniform

PD09 International Workshop on new photon-detectors

Copyright @ Hamamatsu Photonics K.K. All Rights Reserved.

100um pitch Samples

Quenching resistance = $115K\Omega$ by forward IV curve

Sample name	10-100N-F	10-100S-F	10-100S-FS
	(STD)	(Small pixel)	(Wide trace)
Fill factor	78 %	72 %	72 %
ΔV(Vop-Vbr) #1	1.02 V	1.18 V	1.18 V
Dark count at Vop	1075 Kcps	1089 Kcps	1243 Kcps
Pixel capacitance (Cd) #2	373 fF	323 fF	325 fF
Stray capacitance / pixel #3	17 fF	37 fF	61 fF
PDE at Vop , 440nm	79.7 %	76.2 %	77.6 %

#1: Vop is at 2.4E06 #2: by GAIN vs VR curve #3: Ctotal / 100 - Cd at 25°C

PD09 International Workshop on new photon-detectors

Copyright @ Hamamatsu Photonics K.K. All Rights Reserved.

Measurement setup for timing resolution

Trigger from pulse light source

Single-photon measurement : with Amp.

Multi-photon measurement : without Amp and bias resistance change to 1KΩ.

1) Measure the time when pulse height

- is setting threshold level
- 2) Repeat 10K time and plot histogram
- 3) Gaussian fit and get timing resolution

PD09 International Workshop on new photon-detectors

Copyright © Hamamatsu Photonics K.K. All Rights Reserved.

Timing resolution of 100um pitch MPPCs

PD09 International Workshop on new photon-detectors

Copyright © Hamamatsu Photonics K.K. All Rights Reserved.

Summary and next

- Today's topics
 - Introduction
 - Signal generation: Gain, PDE, timing
- Tomorrow:
 - Dark noise, cross-talk, afterpulse
 - Radiation damage, device stability
 - Devices on the market