Lecture III:
 Super-B Particle Identification Systems

J. Va’vra, SLAC

Content of these lectures

- Lecture I: Basic Design Concepts
- Basic PID concepts: Cherenkov detectors, dE/dx, TOF
- Photocathodes and Photon detection efficiency (PDE)
- Photon propagation in dispersive media: transmission, chromaticity, internal reflection, etc.
- DIRC-like detectors, 1-st DIRC-like detector: BaBar DIRC
- Lecture II: Photon detectors
- MaPMTs, MCP-PMTs, GAPDs or SiPMTs, HAPDs, APDs
- Timing performance, quantum efficiency
- Aging, rate capability, effects of magnetic field
- Readout schemes: pixels, strip lines, charge sharing
- New trends: photocathodes, new MCP-PMT construction methods
- Lecture III: Detector systems for SuperB and Belle 2
- Focusing DIRC (FDIRC) concept,
- TOP counters
- Aerogel RICH,
- TOF detectors
- Comparison of various methods.

B-factories: PEP II \& KEKB

- Collisions produce relatively low energy particles, typically $<4 \mathrm{GeV} / \mathrm{c}$.
- SuperB will have a similar mumentum distribution.

New PID systems in Super-B

New PID systems in Super-Belle

New drift chamber

TOP counter, which is a DIRC-like PID detector

Forward
Aerogel RICH

Focusing DIRC in SuperB (FDIRC)

- FDIRC prototype
- Final FDIRC in SuperB

FDIRC prototype

- How to design it ?
- Tests in beam and CRT

A detector plane using pixilated detectors

J.F. Benitez, I. Bedajanek, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff. K. Suzuki, J. Schwiening, J. Uher and J. Va'vra, "Development of a Focusing DIRC," IEEE Nucl.Sci, Conference records, October 29, 2006, and SLAC-PUB-12236, 2006

- Single 3.6 meter-long DIRC bar
- Test bed for various detectors and new concepts of electronics.

Focusing DIRC prototype photon detectors

C. Field et al., Nucl.Inst.\&Meth., A 553 (2005) 96

1) Burle $85011-501$ MCP-PMT (64 pixels, $6 x 6 \mathrm{~mm}$ pad, $\mathrm{o}_{\mathrm{TTS}} \sim 50-70 \mathrm{ps}$)

2) Hamamatsu H-8500 MaPMT (64 pixels, $6 x 6 \mathrm{~mm}$ pad, $\sigma_{\text {TTS }} \sim 140 \mathrm{ps}$)

- Timing resolutions were obtained using a fast laser diode in bench tests with single photons on pad center.

3) Hamamatsu H-9500 Flat Panel MaPMT (256 pixels, $3 \times 12 \mathrm{~mm}$ pad, $\sigma_{\mathrm{TTS}} \sim 220 \mathrm{ps}$)

Cherenkov ring in pixel and time domain

J.F. Benitez, I. Bedajanek, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff. K. Suzuki, J. Schwiening, J. Uher and J. Va’vra,
"Development of a Focusing DIRC," IEEE Nucl.Sci, Conference records, October 29, 2006, and SLAC-PUB-12236, 2006

Cherenkov ring in the time domain:

Cherenkov ring in the pixel domain:

Position 1 Peak 1

- Both domains can be used to determine $\theta_{\text {c }}$.
- FDIRC use time to resolve the forward-backward ambiguity, do chromatic corrections, reject the background, etc.

FDIRC prototype optics design

J.Va’vra, "Simulation of the FDIRC Optics with Mathematica", SLAC-PUB-13464, Nov., 2008

A simulation of a focal surface shape with Mathematica program
(throw pairs of two parallel photons several dip angles And find their intersect in 2D):

- Use a drafting program Graphite, do ray-tracing by hand in 2D.
- Verify it with a ray tracing program in 3D.
- Verify the design with Geant 4 Monte Carlo simulation in 3D.

Ray tracing in DIRC rectangular bar

J.Va' vra, "Simulation of the FDIRC Optics with Mathematica", SLAC-PUB-13464, Nov., 2008

Mathematica code:

An example a ray tracing code for photon propagation in a bar using the Mathematica program:

Laser image in the bar:

Label [bar];
 (Nev=1; Label[start]:

$\mathrm{x} 0=0 ; \mathrm{y} 0=(0+\operatorname{Random}[] *$ barth-barh $/ 2)$; $\mathrm{z} 0=-$ bari $/ 2 ;$
zbarstart $=-$ barli; zbarend $=0$;
Theta $=90 /(180 / \mathrm{P})$) $\mathrm{Phi}=90 /(180 / \mathrm{P})$;
Thetac $=47.3 /(180 /$ Pi); Phic $=(180+$ Random [$[* 2 * 45-45) /(180 /$ Pi $)$;
 $\mathrm{ky}=\operatorname{Sin}[\text { Phi] }]^{*}(\operatorname{Cos}[$ Theta] $]$ Sin [Thetac]* $\operatorname{Cos}[$ Phic $]+\operatorname{Sin}[$ Theta $] * \operatorname{Cos}[$ Thetac] $)+\operatorname{Cos}[$ Phi] $]$ Sin [Thetac]*Sin[Phic]; $\mathrm{k}=\operatorname{Cos}[\text { Theta }]^{*} \operatorname{Cos}[$ Thetac] $-\operatorname{Sin}[$ Theta] $* \operatorname{Sin}[$ Thetac $] * \operatorname{Cos}[$ Phic] $]$
$1=$ Abs $[$ (zbarend -20$) / \mathrm{kz}]$;
xend $=x 0+(z \text { barend }-z 0)^{*} k x / k z ;$
yend=y0+(z barend-z0)*ky/kz;
$n \mathrm{x}=$ Round [xend/barw]; ny=Round[yend/barh]:
 $\mathrm{t}=\mathrm{Sqrt}\left[1-1 / \mathrm{nrefr}^{\wedge} 2\right]$;
$\operatorname{Do}\left[\mathrm{x}=\mathrm{xend}\right.$-barw ${ }^{*}$ i; $\operatorname{If}[\mathrm{Abs}[\mathrm{x}]<$ barw \& \& Abs $\left.[\mathrm{kx}]<t \& \& A b s[\mathrm{ky}]<t \& \& i==n \mathrm{x}, \mathrm{xbarexit}[\mathrm{Nev}]=\mathrm{x}],\{\mathrm{i}, 0,200,2\}\right]$; $\operatorname{Do}[\mathrm{x}=\mathrm{xend}$-barw*; $\operatorname{If}[\mathrm{Abs}[\mathrm{x}]<$ barw \& \& Abs $[\mathrm{kx}]<t \& \& A b s[\mathrm{ky}]<t \& \& \mathrm{i}==n \mathrm{x}, \mathrm{xbarexit}[\mathrm{Nev}]=\mathrm{x}],\{1,-2,-200,-2\}]$ Do $\left[\mathrm{x}=\mathrm{barw}^{*} \mathrm{i}\right.$-xend; If $\left.\left.\operatorname{IAbs}[\mathrm{x}]<\operatorname{barw}^{2} \& A b s[\mathrm{kx}]<t \& \& A b s[\mathrm{ky}]<t \& \& i==n \mathrm{x}, \mathrm{xbarexit}[\mathrm{Nev}]=\mathrm{x}\right],\{1,1,199,2\}\right]$; $\operatorname{Do}\left[\mathrm{x}=\mathrm{barw}^{*} \mathrm{i}\right.$-xend; $\left.\operatorname{If}[\mathrm{Abs}[\mathrm{x}]<\mathrm{barw} \& \& \mathrm{Abs}[\mathrm{kx}]<t \& \& A b s[\mathrm{ky}]<t \& \& i==n \mathrm{x}, \mathrm{xbarexit}[\mathrm{Nev}]=\mathrm{x}],\{\mathrm{i},-1,-199,-2\}\right]$ Do[y=yend-barh*i; If $[\mathrm{Abs}[\mathrm{y}]<$ barh\&\&Abs $[\mathrm{kx}]<t \& \& A b s[\mathrm{ky}]<t \& \& i==n y, y b a r e x i t[\mathrm{Nev}]=\mathrm{y}],\{1,0,200,2\}] ;$ Do[y=yend-barh*i; If[Abs[y]<barh\&\&Abs[kx]<t\&\&Abs[ky]<t\&\&i==ny, ybarexit[Nev]=y], \{i,-2,-200,-2\}]; Do[y=barh*i-yend; If $[\mathrm{Abs}[\mathrm{y}]<$ barh \& \& Abs[kx]<t\&\&Abs[ky]<t\&\&i==ny, ybarexit[Nev]=y], \{i, 1, 199, 2\}]; Do[y=barh*i-yend; If[Abs[y]<barh\&\&Abs[kx]<t\&\&Abs[ky]<t\&\&i==ny, ybarexit[Nev]=y], \{i,-1,-199,-2\}]; If [OddQ[nx], kx = -kx, kx = kx];
If [OddQ[ny], ky = -ky, ky = ky];
$\operatorname{dir} \operatorname{cosx}[\mathrm{Nev}]=\mathrm{kx}$;
$\operatorname{dir} \operatorname{cosy}[\mathrm{Nev}]=\mathrm{ky} ;$
Particle direction: θ and ϕ
Cherenkov photon emission point: $\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$ with polar and angles θ_{c} and ϕ_{c}
Direction cosines in the bar system:

$$
\vec{k}=\left(\begin{array}{l}
k_{x} \\
k_{y} \\
k_{z}
\end{array}\right)=\left(\begin{array}{c}
\cos \phi\left(\cos \theta \sin \theta_{c} \cos \phi_{c}+\sin \theta \cos \theta_{c}\right)-\sin \phi \sin \theta_{c} \sin \phi_{c} \\
\sin \phi\left(\cos \theta \sin \theta_{c} \cos \phi_{c}+\sin \theta \cos \theta_{c}\right)+\cos \phi \sin \theta_{c} \sin \phi_{c} \\
\cos \theta \cos \theta_{c}-\sin \theta \sin \theta_{c} \cos \phi_{c}
\end{array}\right)
$$

- Mathematica code describes a photon bouncing in the rectangular bar.

Cherenkov ring image for FDIRC prototype $=\mathbf{f}\left(\theta_{\text {dip }}\right)$
 J.Va'vra, "Simulation of the FDIRC Optics with Mathematica", SLAC-PUB-13464, Nov., 2008

Calculated images in the flat detector plane located in the mirror's focus:
Real ring image in the beam:

x [cm]
12/4/09
J. Va'vra, Frascatti PID lecture III

Zoom into the details of the Cherenkov ring image

J.Va'vra, "Simulation of the FDIRC Optics with Mathematica", SLAC-PUB-13464, Nov., 2008
$y[\mathrm{~cm}]$ Mathematica code image from a track with $\theta_{\text {dip }}=90^{\circ}$:
Kaleidoscope looking into a bar:

Another view at wiggles - they affect mostly Cherenkov wings;:

- Kaleidoscopic wiggles in image come from the bar rectangular bar structure.
- One would see this structure only if a detector would have a very high resolution.
- Could one correct them analytically ?

Focusing DIRC prototype pixel reconstruction

J. Vavra, "FDIRC prototype design" log book, page 129; G4 simulation by I. Bedajanek

Prototype coordinate systems - $\theta_{\text {dip }}=90^{\circ}$:

$\mathrm{kx}, \mathrm{ky}, \mathrm{kz}$ determined from Geant 4 simulation:

- Each detector pixel has a unique assignment of k_{x}, k_{y}, k_{z} for average λ :
$\mathrm{k}_{\mathrm{x}}=\cos \alpha, \mathrm{k}_{\mathrm{y}}=\cos \beta, \mathrm{k}_{\mathrm{z}}=\cos \gamma$ - photon direction cosines
$\cos \theta_{c}=k_{y}, \theta_{c}$ - Cherenkov angle $=>m=p \sqrt{ }\left(n^{2} \cos ^{2} \theta_{c}-1\right)$, if p is known from tracking
$\mathrm{L}_{\text {path }}($ direct $)=\mathrm{z}_{\text {particle position }} * \sqrt{ }\left[\left(\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{z}}\right)^{2}+\left(\mathrm{k}_{\mathrm{y}} / \mathrm{k}_{\mathrm{z}}\right)^{2}+1\right]$ - Photon path length in bar \#1
$\mathrm{L}_{\text {path }}$ (indirect) $=\left(2^{*} \mathrm{~L}_{\text {bar }}-\mathrm{z}_{\text {particle position }}\right)^{*} \sqrt{ }\left[\left(\mathrm{k}_{\mathrm{x}} / \mathrm{k}_{\mathrm{z}}\right)^{2}+\left(\mathrm{k}_{\mathrm{y}} / \mathrm{k}_{\mathrm{z}}\right)^{2}+1\right]$ - Photon path length in bar \#2
TOP $=\mathrm{L}_{\text {path }} / \mathrm{v}_{\mathrm{g}}=\mathrm{L}_{\text {path }} \mathrm{n}_{\mathrm{g}} / \mathrm{c}=\mathrm{L}_{\text {bar }} \mathrm{n}_{\mathrm{g}} /\left(\mathrm{k}_{\mathrm{z}} \mathrm{c}\right)$ - time-of-propagation in bar
$\mathrm{N}_{\text {bounces }}=\mathrm{n}_{\mathrm{x}}+\mathrm{n}_{\mathrm{y}}=\mathrm{L}_{\text {path }} /\left[\operatorname{bar}_{\text {width }} \operatorname{abs}\left(\mathrm{k}_{\mathrm{z}} / \mathrm{k}_{\mathrm{x}}\right)\right]+\mathrm{L}_{\text {path }} /\left[\operatorname{bar}_{\text {height }} \operatorname{abs}\left(\mathrm{k}_{\mathrm{z}} / \mathrm{k}_{\mathrm{y}}\right)\right]$ - number of photon bounces

$\Delta T O P=\left(\mathrm{TOP}_{\text {measured }}-\mathrm{TOP}_{\text {expected }}\right)$
 J.V., "Beam test FDIRC" \log book \#5, page 19-33, 2008, Run 4, position $1,10 \mathrm{GeV} \mathrm{e}^{-}$

Expected distributions:

TOP expected

Although the TOP distribution is very broad, \triangle TOP is narrow

Measured - Expected:
$\Delta T O P=\left(\mathrm{TOP}_{\text {measured }}-\mathrm{TOP}_{\text {expected }}\right)$ is dominated by the chromatic broadening

Overall detection efficiency $=\mathbf{f}(\lambda)$ and its dependency on various variables

-We need this to determine:
a) Chromatic effects
b) Number of photoelectrons Npe
c) Effect of each material used in the detector

FDIRC prototype: efficiency $=f(\lambda)$

J.V., "No-FDIRC.xls" spreadsheet, 2008

- This defines a bandwidth (BW) of the detector:
(Larger the BW , larger Npe, but also a larger the chromatic broadening)
- $\mathrm{N}_{\mathrm{o}} \sim 33 \mathrm{~cm}^{-1}, \mathrm{~L}=1.7 \mathrm{~cm}, \theta_{\text {dip }}=90^{\circ}$, middle of bar
- Npe $\sim 370 \mathrm{~L} \int \varepsilon(\mathrm{E}) \sin ^{2} \theta_{\mathrm{c}} \mathrm{dE} \sim 30$ photoclectrons

FDIRC prototype: PDE = f (various variables)

J.V. , "Focusing DIRC design.xls" spreadsheet

H-8500 MaPMT with super Bialkali, $\theta_{\text {dip }}=90^{\circ}$, Lpath $=7 \mathrm{~m}$, DIRC quartz bar

For Bialkali: $\sigma\left(\mathrm{n}_{\mathrm{g}}\right) / \mathrm{n}_{\mathrm{g}} \sim 0.013$

$$
\begin{aligned}
& \sigma(\text { TOP }) \sim 500 \mathrm{ps} \\
& \text { for Lpath }=7 \mathrm{~m}
\end{aligned}
$$

PDE - H-8500 MaPMT

PDE - H-8500 MaPMT

PDE = Probability detection efficiency

Chromatic effects in FDIRC prototype

- Chromatic broadening of a light pulse in dispersive medium
- Example of \triangle TOP \& Δ TOP/Lpath in FDIRC data
- Chromatic correction in practice
- Final effect on data

Chromatic dispersion of light impulse

$$
\begin{gathered}
\mathbf{v}_{\text {group }}=c / n_{\text {group }}=c /\left[n_{\text {phase }}-\lambda * d n_{\text {phase }} / d \lambda\right] \\
t \equiv \text { TOP }=L_{\text {path }} / \mathbf{v}_{\text {group }}=L_{\text {path }}\left[n_{\text {phase }}-\lambda * d n_{\text {phase }} / d \lambda\right] / c=\text { time-of-propagation } \\
d \mathrm{dt}=\mathrm{L} \lambda \mathrm{~d} \lambda / c *\left|-d^{2} n_{\text {phase }} / d \lambda^{2}\right|
\end{gathered}
$$

dt is pulse dispersion, fiber length L, wavelength bandwidth $d \lambda$, refraction index $\mathbf{n}(\lambda)$, \mathbf{n}_{g} is typically a few \% larger than \mathbf{n} for photons in a Bialkali photocathode wavelength range

- Chromaticity of the mefium can easily dominate the timing resolution.

Chromatic broadening observed clearly in FDIRC prototype

J.V., "Beam test FDIRC" log book \#5, page 19-33, 2008, Run 4, position 1, 10GeV e-

Slot 4, single pixel time distribution:

Example of Chromatic growth in FDIRC prototype

$$
\text { TOP }=\mathrm{L}_{\text {path }} \mathrm{n}_{\text {group }} / \mathrm{c} \Rightarrow \sigma_{\text {TOP }} / \text { TOP } \sim \sqrt{ }\left[\left(\sigma_{\text {Lpath }} / \mathrm{L}_{\text {path }}\right)^{2}+\left(\sigma_{\mathrm{ng}} / \mathrm{n}_{\mathrm{g}}\right)^{2}\right]
$$

FDIRC prototype beam test data analysis:

Measured

 chromatic growth rate:$\sim 40 \mathrm{ps} / \mathrm{m}$

$$
\Delta \mathrm{TOP} / L \text { path }=\left(\mathrm{TOP}_{\text {measured }}-\mathrm{TOP}_{\text {expected }}\right) / \text { Lpath }[\mathrm{ns} / \mathrm{m}]
$$

- This time dispersion growth rate is bad for the TOF counters, however, we can use it to correct the chromatic dispersion of θ_{c} angle.
- We can call it "tagging color by time".

Correlation of "d θ_{c} vs dTOP/Lpath" to do the chromatic correction

J.F. Benitez, I. Bedajanek, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff. K. Suzuki, J. Schwiening, J. Uher and J. Va"vra, "Development of a Focusing DIRC," IEEE Nucl.Sci, Conf. Rec., October 29, 2006, and SLAC-PUB-12236, 2006 and SLAC-PUB-12803, 2007

$$
\begin{array}{lc}
\text { Cherenkov angle production controlled by } n_{\text {phase }}\left(\cos \theta_{\mathrm{c}}=1 /\left(n_{\text {phase }} \beta\right):\right. & \theta_{\mathrm{c}}(\text { red })<\theta_{\mathbf{c}} \text { (blue) } \\
\text { Propagation of photons is controlled by } n_{\text {group }}\left(\mathbf{v}_{\text {group }}=\mathbf{c}_{0} / \mathbf{n}_{\text {group }}=\mathbf{c}_{0} /\left[\mathbf{n}_{\text {phase }}-\lambda * \mathrm{dn}_{\text {phase }} / \mathrm{d} \lambda\right]\right): & \mathbf{v}_{\text {group }}(\text { red })>\mathbf{v}_{\text {group }} \text { (blue) }
\end{array}
$$

Tagging color by time:

$$
\text { TOP } / \text { Lpath }=1 / \mathrm{v}_{\text {group }}(\lambda)
$$

Excel calculation:

dTOP/Lpath [ns/m] =TOP/Lpath(λ) - TOP/Lpath(410nm)

Geant 4 - without and with pixilization:

$\Delta \mathrm{TOP} / \mathrm{Lpath}=\left(\mathrm{TOP}_{\text {measured }}-\mathrm{TOP}_{\text {expected }}\right) /$ Lpath $[\mathrm{ns} / \mathrm{m}]$

Chromatic correction

J.F. Benitez, I. Bedajanek, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff. K. Suzuki, J. Schwiening, J. Uher and J. Va"vra, "Development of a Focusing DIRC," IEEE Nucl.Sci, Conf. Rec., October 29, 2006, and SLAC-PUB-12236, 2006 and SLAC-PUB-12803, 2007

FDIRC prototype beam test data - example of 3 mm pixels only:

To be able to do this one has to measure the photon timing to σ ~200 ps

Correction off:

Correction on:

$\sigma \sim \sqrt{ }\left(8^{2}-6^{2}\right) \sim$
$\sim 5.3 \mathrm{mrad}$ (consistent with expectation for the chromatic error)

- The chromatic correction starts working for Lpath > 2-3 meters. Since bar penetrates the magnet, it is already $1-2 \mathrm{~m}$ longer, so this correction will help.
- This is the first RICH detector ever to do the chromatic correction by timing !!!

Example: Errors for FDIRC prototype

J. Va'vra, Based on test beam results with 3 mm pixels

Angular errors:

- Cherenkov angle $\Delta \theta_{\mathrm{c}}$ (3mm pixels)

Imaging:
$\Delta \theta_{\text {bar size }} \sim 0 \mathrm{mrad}$
$\Delta \theta_{3 \mathrm{~mm} \text { pixel size }} \sim 2.5-3 \mathrm{mrad}$
Photon propagation in bar:
$\Delta \theta_{\text {Photon transport in bar }} \sim 2-3 \mathrm{mrad}$
Ring fringes due to rectangular bars:
$\Delta \theta_{\text {Photon transport in bar }} \sim 0-9 \mathrm{mrad}$
External tracking:
$\Delta \theta_{\text {Track direction }} \sim 1 \mathrm{mrad}$
Cherenkov ring production:
$\Delta \theta_{\text {Track multiple scattering in bar }} \sim 1 \mathrm{mrad}$
$\Delta \theta_{\text {Chromatic }}($ Lpath $) \sim 2-5.5 \mathrm{mrad}$ *
Total:
$\Delta \theta_{\text {Total expect }} \sim 6-7 \mathrm{mrad}$

Timing errors in test beam:

- $\triangle \mathrm{TOP}:$

Detector:

$$
\begin{aligned}
& \Delta \mathrm{TOP}_{\text {MaPMT }} \mathrm{TTS} \sim 150 \mathrm{ps} * \\
& \Delta \mathrm{TOP}_{\mathrm{TDC}} \sim 100 / \sqrt{ } 12 \sim 30 \mathrm{ps} *
\end{aligned}
$$

External trigger:
$\Delta \mathrm{TOP}_{\text {Trigger \& DCH to }} \sim 50 \mathrm{ps}$
External tracking:
$\Delta \mathrm{TOP}_{\text {Track TOF }} \sim$ negligable
Bunch length:
$\Delta \mathrm{TOP}_{\text {Bunch length }} \sim$ negligable

Total:

$$
\Delta \mathrm{TOP}_{\text {Total expect }} \sim 200 \mathrm{ps}
$$

* Improved compared to BaBar DIRC

Expected final performance at incidence angle of $\mathbf{9 0}{ }^{\circ}$

J.F. Benitez, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff. J. Schwiening, J. Va’vra, L. Ruckman, and G.S. Varner, Nucl. Instr. \& Meth., A595(2008)104-107
Expected performance of a final device:

- Prototype's Npe(measured) and Npe(expected) are consistent within ~20\%.
- BaBar DIRC design with ET PMTs: No ~ $30 \mathrm{~cm}^{-1}$, and Npe ~27.
- SuperB with Hamamatsu H-9500 MaPMTs:

We expect No $\sim 31 \mathrm{~cm}^{-1}$, which in turn gives Npe ~ 28 for 1.7 cm -thick fused silica bar, and better performance in pi/K separation than the present BaBar DIRC.

SuperB FDIRC

Going for preliminary quotes to get a feel for the cost and a difficulty to make it

J. Va’ vra, SLAC-PUB-13763, 2009

BaBar:

- BaBar wedge was designed for pin hole focusing and 1.2 m distance to PMTs. The wedge was not designed for a focusing optics.

SuperB:

- Add a micro-wedge to remove a 6 mrads angle at the wedge bottom.
- Add another wedge to rotate all photons pointing up and direct them better to the cylindrical mirror.
- Use double-folded mirror optics to stay away from the magnet, and have a good access to detectors.
- Use underfocusing to reduce the size.
- The entire detector has $\sim 30,000$ pixels, using either H-9500 or H-9500 MaPMTs.
- MC program prediction: $\sigma_{\theta c} \sim 9 \mathrm{mrads}$, without the chromatic correction, which could reduce the resolution further by 1-2 mrads.
- We now have a mechanical design and the first quotes for the optical piece - it is doable and affordable.

Read more about the FDIRC work

- Benitez, I. Bedajanek, D.W.G.S. Leith, G. Mazaheri, B .N. Ratcliff, K. Suzuki, J. Schwiening, J. Uher, and J. Va' vra, SLAC-PUB-12236, October 2006.
- J. Va’vra, J. Benitez, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, and K. Suzuki, presented at Vienna conference, 2007; SLAC-PUB-12803, March 2007.
- J. Benitez, D.W.G.S. Leith, G. Mazaheri, B.N. Ratcliff, J. Schwiening, J. Va’vra, L. Ruckman, and G. Varner, Nucl. Inst. \& Meth., A595(2008)104-107.
- J. Va" vra, "Simulation of the FDIRC optics with Mathematica", SLAC-PUB-13464, October, 2008.
- C. Field, T. Hadig, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, J. Uher and J. Va'vra, "Development of photon detectors for a fast focusing DIRC," Nucl. Instr.\&Meth., A553(2005)96-106.
- C. Field, T. Hadig, M. Jain, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff, J. Schwiening, and J. Va' vra, "Novel photon detectors for focusing DIRC prototype," Nucl. Instr.\&Meth., A518(2004)565-568.
- J. Va’vra, "Focusing DIRC design for SuperB", SLAC-PUB-13763, October 2009

- FDIRC prototype was the 1-st RICH detector ever to perform the chromatic correction by timing.

TOP counter

- Principle of TOP counter
- Chromatic effects
- TOP counter for Super Belle

Principle of TOP counter

M. Staric, K. Inami, P. Krizan, T. Iijima, Nucl. Instr. \& Meth., A595(2008)252,
M. Akatsu et al., Nucl. Instr. \& Meth., A440(2000)124 and K. Inami, RICH workshop, Giessen, Germany, 2009

TOP counter idea:

MC simulation of the Cherenkov ring and TOP distribution in a single pixel:

- Initial version of TOP counter: Measure time very well ($\sigma_{\text {TTs }} \sim 35 \mathrm{ps}$) and the x-coordinate only $\left(\sigma_{x} \sim 1.5 \mathrm{~mm}\right)$. In addition measure t_{o} as best as possible, and track TOF.
- Will this simple scheme work ?

Chromatic broadening of TOP for different PC

J.Va’vra, Q.E.\&Tr\&n - overall.xls spreadsheet

$\operatorname{TOP}\left(\Phi, \theta_{\mathrm{c}}, \lambda\right)=\left[\mathrm{L}_{\text {total photon path }}\left(\Phi, \theta_{\mathrm{c}}\right) /\left[\mathrm{c} / \mathrm{n}_{\mathrm{g}}(\lambda)\right]\right.$, where $\mathrm{n}_{\mathrm{g}}=\mathrm{n}_{\text {phase }}-\lambda * \mathrm{dn}_{\text {phase }} / \mathrm{d} \lambda$
Determine TOP spread for three photon path lengths: 10, 25 and 50 cm :

$\sigma_{\text {Chromatic }} \sim \Delta T O P / \sqrt{12}$

- $\quad \sigma_{\text {Chromatic }}$ gets smaller as λ gets more red.
- $\sigma_{\text {Chromatic }} \sim 5$ ps fro Lpath $=10 \mathrm{~cm}$, and ~ 480 ps for Lpath $=10$ meters for GaAsP.

Chromatic error can dominate timing in TOP counter for long path lengths

```
            J. Va'vra, TOF_counter_Npe.xls spreadsheet
        \(\sigma_{\text {Total }} \sim \sqrt{ }\left[\sigma_{\text {Electronics }}^{2}+\sigma_{\text {Chromatic }}{ }^{2}+\sigma_{\text {TTS }}{ }^{2}+\sigma_{\text {Track }}^{2}+\sigma_{\text {to }}{ }^{2}\right]\)
\(\sigma_{\text {Electronics }}\) - electronics contribution \(\sim 10 \mathrm{ps}\)
\(\sigma_{\text {Chromatic }}-\) chromatic term \(=\mathrm{f}\) (photon path length) \(\sim 5 \mathrm{ps}-1.5 \mathrm{~ns}\) for path lengths \(10 \mathrm{~cm}-15\) meters
\(\sigma_{\text {TTS }} \quad\) - MCP-PMT transit time spread \(\sim 35 \mathrm{ps}\)
\(\sigma_{\text {Track }} \quad-\) timing error due to track length \(\mathrm{L}_{\text {path }}\) (poor tracking in the forward direction ) \(\sim 5-10 \mathrm{ps}\)
\(\sigma_{\mathrm{to}} \quad\) - start time dominated by the SuperB crossing bunch length \(\sim 20-25 \mathrm{ps}\) at best
```

Expected final resolution:

- Chromatic error dominates the timing resolution for long photon path lengths
- Red-sensitive photocathodes do help a lot. But they are difficult to make.

TOP counter: measuring TOP only

(My naive simple estimate for pedagogical purpose only)

Assume:

$4 \mathrm{GeV} / \mathrm{c}, \mathrm{n}=1.47$, Total photon path in quartz $=\mathrm{L}_{\text {path }} \sim 2$ meters, SL-10 MCP-PMT with Bialkali or GaAsP photocathodes, $\sigma_{\text {TTS }}$ (SL-10) ~ 40 ps

Cathode	$\begin{gathered} \Delta \mathrm{TOP}= \\ \text { TOP(} \pi)-\mathrm{TOP}(\mathrm{~K}) \\ \text { After } 2 \text { meters } \end{gathered}$	$\sigma(\mathrm{TOP})_{\text {single photon }}$ after 2 meters (dominated by chromaticity)	Npe Measured (from K.Inami)	$\begin{gathered} \sigma(\mathrm{TOP})_{\text {track }}= \\ \sigma(\mathrm{TOP})_{\text {single ph }} / \sqrt{ } \mathrm{Npe} \end{gathered}$	$\begin{gathered} \text { Separation at } \theta_{\text {dip }}=90^{\circ} \\ {[\mathrm{TOP}(\pi)-\mathrm{TOP}(\mathbf{K})] / \sigma(\mathrm{TOP})_{\text {track }}} \end{gathered}$ If we use it as a TOF counter only without imaging
Bialkali	$\sim 105 \mathrm{ps}$	~ 181 ps	~ 16	$\sim 45 \mathrm{ps}$	~ 2.3 sigmas
GaAsP	$\sim 105 \mathrm{ps}$	$\sim 123 \mathrm{ps}$	~ 16	$\sim 31 \mathrm{ps}$	~ 3.4 sigmas

- PID with TOP measurement only works only for small photon path lengths.
- Bialkali PC is substantially worse than GaAsP PC.

TOP counter: measuring $\mathrm{x} \&$ TOP only

B. Ratcliff, ICFA Inst. Bulletin, http://www.slac.stanford.edu/pubs/icfa/spring01/paper2/paper2a.html, 2001

For $\theta_{\text {dip }}=90^{\circ}: \quad$ TOP $=L_{\text {path }} / v_{g}=L_{\text {path }} n_{\mathrm{g}} / \mathrm{c}=\mathrm{L}_{\text {bar }} \mathrm{n}_{\mathrm{g}} /\left(\mathrm{k}_{\mathrm{z}} \mathrm{c}\right) \quad \mathrm{k}_{\mathrm{x}}=\sin \phi_{\mathrm{c}} \sin \theta_{\mathrm{c}}$

$$
\begin{array}{ll}
\tan \alpha_{x}=k_{x} / k_{z} & k_{y}=\cos \theta_{c} \\
\sin \theta_{c}=k_{z} * \sqrt{ }\left(\tan ^{2} \alpha_{x}+1\right) & k_{\mathrm{z}}=\cos \phi_{c} \sin \theta_{c}
\end{array}
$$

Imaging with

x \& TOP:

$$
\sigma_{\theta c}^{2} \sim \tan ^{2} \theta_{\mathrm{c}}\left[\left(\sigma\left(\mathrm{n}_{\mathrm{g}}\right) / \mathrm{n}_{\mathrm{g}}\right)^{2}+(\sigma(\mathrm{TOP}) / \mathrm{TOP})^{2}+\sigma^{2}\left(\alpha_{\mathrm{x}}\right) \tan ^{2} \alpha_{\mathrm{x}}\right]
$$

- Is measuring TOP $\& \alpha_{x}$ sufficient ?

- Putting numbers into the above equation: $\mathrm{L}_{\text {path }}=2 \mathrm{~m}, \mathrm{\sigma}_{\text {TTS }} \sim 40 \mathrm{ps}, \sigma\left(\mathrm{n}_{\mathrm{g}}\right) / \mathrm{n}_{\mathrm{g}} \sim 0.013$ for Bialkali photocathode (see lecture I), $\sigma($ TOP $) /$ TOP ~ 0.0039, and $\sigma\left(\alpha_{x}\right) \sim 0.005$, one obtains $\sigma_{\theta c} \sim 15^{\text {b }}$ mrads for Lpath >1.5 meters.
- This is not good enough. Therefore, proponents suggested: (a) use red-sensitive photocathodes, such as GaAsP, to reduce the chromatic error, (b) a UV filter to cut off low wavelengths, (c) add a mirror segmentation, which is a "cheap way" to do the y-pixillization (measurement of α_{y}).

3 Solutions are being considered at present

K. Inami, Giessen Cherenkov detector workshop, 5.11.2009

My comments:

- The segmented mirror produces the same effect as the "pixelized FDIRC," but with much smaller number of pixels. They work on backward going photons only.
- To make the TOP counter to work as a TOF counter in the forward direction, they have to achieve $\sigma_{\text {TTS }} \sim 40 \mathrm{ps}$ and $\sigma_{\text {to }} \sim$ 25 ps. A very tall order !! This is, however, essential to achieve a similar performance as FDIRC.
- My worry would be a possible rate load on a single pixel. FDIRC will share this load among 30,000 pixels.
- Proponents proposed GaAsP PC. Very difficult and expensive photocathode to consider.
- UV filters are fine, but one is also losing signal, which may be a problem in a high background environment.

PID in TOP counter is a complicated likelihood function of these variables: TOF, TOP, TTS, UV filter, $\alpha_{x}, \alpha_{y}, t_{0}, p, \theta_{\text {track }}$

TOF of a track
(plays an important part for tracks close to detector)

$\mathbf{t}_{\mathbf{0}}$ (bunch time, and its resolution)

- Although the counter's principle is simple, there is no simple formula to understand this counter; one has to have a MC to predict its performance.

TOP counter: A solution with multi-alkali PC

K. Inami, Giessen Cherenkov detector workshop, 5.11.2009
π / K PID (Multi-alakali, 350nm filter):
MC study

- Do not have a separation prediction for this particular design.
- For GaAsP photocathode: π / K separation ~ 3 sigma at $4 \mathrm{GeV} / \mathrm{c}$.

SuperB Forward TOF

- Timing strategies
- Beam \& laser bench tests
- Detectors
- SuperB TOF system

Timing strategies

- Constant-fraction-discriminator (CFD):
- Timing point set at $\sim 15 \%$ of amplitude typically - done in hardware $=>$ it is fast.
- Less sensitive to pulse height than ordinary discriminator.
- However, it still needs an off-line ADC correction to get the best5 resolution.

- Waveform sampling:
- typically $2.5-4 \mathrm{GSa} / \mathrm{s}$, or $400 \mathrm{ps} / \mathrm{bin}-250 \mathrm{ps} / \mathrm{bin}$.
- Use a software spline interpolation to get to a $10 \mathrm{ps} / \mathrm{bin}$ range.
- Timing methods:
a) CFD algorithm in software, timing point is usually $15-25 \%$ of peak amplitude

b) Create a reference pulse by fitting a quadratic function to leading edge.

Step the reference pulse through a given spline-interpolated pulse and find a χ^{2} minimum.

Initial interest sparked by Nagoya beam tests

K.Inami et al., Nagoya Univ., Japan - SNIC conference, SLAC, April 2006

MCP-PMT:
10 mm dia. quartz radiator
$6 \mu \mathrm{~m}$ hole MCP

Use two identical TOF detectors in the beam (Start \& Stop):

TOF1

Amp/CED/TDC:

Test beam resolution with ~3 mm quartz radiator $\left(\mathrm{N}_{\mathrm{pe}} \sim 20\right)$:

Electronics resolution:

Test beam resolution with ~13 mm quartz radiator $\left(\mathrm{N}_{\mathrm{pe}} \sim 50\right)$:

"Pixilated" TOF counter

- Cherenkov light radiator: 5-10 mm thick quartz radiator cubes +2 mm window
- Short 4 small pads together to form 16 macro-pads per detector
- Want to run MCP-PMT at low gain of $\sim 2-5 \times 10^{4}$. Arguments for it: (a) smaller aging, and (b) good results in beam.

"DIRC-like" TOF detector

J.Va’ vra, http://www.slac.stanford.edu/~jjv/activity/Vavra_Forward_TOF_geometry.pdf, Perugia, June 2009 http://www.slac.stanford.edu/~jjv/activity/Vavra_Forward_TOF_update.pdf, SLAC, October 2009

Part of a hexagon:

- Not all photons are of "equal" quality. Some we want to throw away because they are affected by the chromatic broadening.
- We do not want photons to rattle around for too long
- This design requires a high gain operation to detect single photons

Hamamatsu MCP-PMT (SL-10) with
strips and a protection foil:

$\phi 10 \mu \mathrm{~m}$ holes

Time-of-Proparation:
$\left.\operatorname{TOP}\left(\Phi, \theta_{\mathrm{c}}, \lambda\right)=\left[\mathrm{L}_{\text {photon path }}\right)\right] /\left[\mathrm{v}_{\mathrm{g}}(\lambda)\right]$
A direct photon is accepted only if: TOP $_{\mathrm{i}}{ }^{\text {measured }}-$ TOP $_{\mathrm{i}}{ }^{\text {expected }}<$ Cut

1 ASIC/16 channels

Even 3 photons will do as long as they are "good" photons
J. Va'vra, Frascatti PID lecture III

Pixilated TOF counter - simple

J. Va’vra, http://www.slac.stanford.edu/~jjv/activity/Vavra_Forward_TOF_update.pdf, SLAC, October 2009

Assume:
$2 \mathrm{GeV} / \mathrm{c}$, Total particle track length ~ 2 meters, 1 cm radiator \Rightarrow Npe ~ 40, Photonis MCP-PMT with Bialkali, low gain operation $=>\sigma_{\text {TTS }} \sim 120 \mathrm{ps}$

Cathode	Δ TOF $=$ TOF $(\pi)-\operatorname{TOF}(K)$ after 2 meters	Npe 1cm-long radaitor	$\sigma(\text { TOF })_{\text {track }}$ total contribution	Separation $[$ TOF $(\pi)-\operatorname{TOF}(\mathrm{K})] / \sigma(\mathrm{TOF})_{\text {track }}$
Bialkali	$\sim 184 \mathrm{ps}$	~ 40	$\sim 25 \mathrm{ps}$	~ 7.4 sigmas
Bialkali	$\sim 184 \mathrm{ps}$	~ 40	$\sim 50 \mathrm{ps}$	~ 3.7 sigmas

In case of problems

- A good π / K separation at $2 \mathrm{GeV} / \mathrm{c}$ even if only $\sigma(\text { TOF })_{\text {track }} \sim 50 \mathrm{ps}$ is achieved.

"DIRC-like" TOF detector - simple

$\sigma_{\text {Total }} \sim \sqrt{ }\left[\sigma_{\text {Electronics }}^{2}+\left(\sigma_{\text {Chromatic }} / \sqrt{ }\left(\varepsilon_{\text {Geometrical_loss }}{ }^{*} \mathrm{~N}_{\mathrm{pe})}\right)^{2}+\left(\sigma_{\text {TTS }} / \sqrt{ } \varepsilon * \mathrm{~N}_{\mathrm{pe}}\right)^{2}+\sigma_{\text {Track }}^{2}+\right.\right.$

$$
\left.+\sigma_{\text {detector coupling to bar }}^{2}+\sigma_{t 0}^{2}\right]
$$

$\sigma_{\text {Electronics }}$ - electronics contribution $\sim 10 \mathrm{ps}$
$\sigma_{\text {Chromatic }}-$ chromatic term $=\mathrm{f}$ (photon path length) $\sim 5-45 \mathrm{ps}$ for path lengths $10-50 \mathrm{~cm}$
$\sigma_{\text {TTS }} \quad-$ transit time spread $\sim 35 \mathrm{ps}$
$\sigma_{\text {Track }} \quad-$ timing error due to track length $L_{\text {path }}$ (poor tracking in the forward direction) $\sim 5-10 \mathrm{ps}$ $\sigma_{\text {detector coupling to bar }}$ - timing error due to detector coupling to the bar $\sim 10 \mathrm{ps}$
$\sigma_{\mathrm{to}} \quad$ - start time dominated by the SuperB crossing bunch length $\sim 20-25 \mathrm{ps}$ (?)
$\varepsilon_{\text {Geometrical_loss }}$ - loss due to a geometrical acceptance ("reject" bad photons) $\sim 10 \%$

Total expected final resolution:

- Bialkali photocathode will give $\sigma_{\text {ave }} \sim 40 \mathrm{ps}$ on average at best.

Pixilated TOF counter prototype

J. Va’vra et al., Nucl. Instr. \& Meth., A606(2009)404-410

- Cherenkov light for ultra-fast response.
- Burle/Photonis MCP-PMTs with $10 \mu \mathrm{~m}$ MCP holes.
- Short together 4 pads to get a signal; all the rest of pads grounded.
- A 10 mm -long, 10 mm dia, quartz radiator, Al-coating on cylinder sides:
(a) Fermilab test: good coating by Photonis, (b) SLAC test: poor coating.
- Calculation using all known efficiencies: Npe ~30.
- Calibration of the Fermilab beam test: Npe $\sim 45 \pm 10$.

Beam test at Fermilab: 120 GeV protons

120 GeV protons:

Loose ADC cuts and PH correction:

ADC 0 with loose cuts:

ADC 0 correction to CFD:

ADC1 with loose cuts:

$\mathrm{ADC1}$ correction to CFD:

- Additional pulse height correction to CFD timing was found necessary to obtain the best result.

Are the results consistent with expectations ?

$$
\begin{aligned}
& \sigma_{\text {LASER }} \sim \sqrt{ }\left[\sigma^{2}{ }_{\text {MCP-PMT }}+\sigma^{2} \text { Radiator }+\sigma^{2} \text { Pad broadening }+\sigma_{\text {Electronics }}^{2}+\ldots\right]= \\
& =\sqrt{ }\left[\left(\sigma_{\mathrm{TTS}} / \sqrt{ } \mathrm{N}_{\mathrm{pe}}\right)^{2}+\left(\left(\left(12000 \mu \mathrm{~m} / \cos \Theta_{\mathrm{C}}\right) /(300 \mu \mathrm{~m} / \mathrm{ps}) / n_{\text {group }}\right) / \sqrt{ }(12 \mathrm{Npe})\right)^{2}+\right. \\
& \left.+((2 \times 6000 \mu \mathrm{~m} / 300 \mu \mathrm{~m} / \mathrm{ps}) / \sqrt{ }(12 \mathrm{Npe}))^{2}+(4.7 \mathrm{ps})^{2}\right]
\end{aligned}
$$

For $\mathrm{Npe}=30, \sigma_{\text {TTS }} \sim 120 \mathrm{ps}$, contribution from each term: $\quad 22 \mathrm{ps} \quad 2.1 \mathrm{ps} \quad 2.2 \mathrm{ps} \quad 4.7 \mathrm{ps}$

Pixilated TOF scheme

- SLAC test had smaller number of photoelectrons due to poor radiator coating.
- Laser test results very similar to the SLAC \& Fermilab beam test results.
- CFD/ADC electronics is giving a very similar results as the waveform digitizing electronics with either Waveform Catcher chip (Orsay) or Target chip (Hawaii).

Aerogel RICH

- Focusing vs. non-focusing
- Expected performance
- What detector to use ?

Principle of focusing ARICH

S. Korpar et al., Nucl. Instr.\&Meth, A553(2005)64 and A548(2005)383

Single

 thick radiator

Two focusing radiators

- ARICH suffers from small number of photoclectrons (small n). The way out of it is to use a thicker radiator, which in turn leads to a poor angular resolution.
- Solution: Make the Focusing ARICH with two radiators, where $n_{1}=1.046$, and $n_{2}=1.055\left(n_{1}<n_{2}\right)$.

Proximity Focusing Aerogel RICH

P. Krizan, Aerogel RICH, http://www.phys.hawaii.edu/superb04/slides.html

Assume:
$4 \mathrm{GeV} / \mathrm{c}, \mathrm{n}=1.05$, radiator length $=2 \mathrm{~cm}, \mathrm{H}-8500$ pixels ($6 \mathrm{~mm} \times 6 \mathrm{~mm}$)

$\theta_{\mathrm{c}}(\pi)$ $[\mathrm{mrad}]$	$\Delta \theta_{\mathrm{c}}=\theta_{\mathrm{c}}(\pi)-\theta_{\mathrm{c}}(\mathrm{K})$ $[\mathrm{mrad}]$	$\sigma\left(\theta_{\mathrm{c}}\right)_{\text {single photon }}$ measured	Npe measured	$\sigma\left(\theta_{\mathrm{c}}\right)_{\text {track }}=$ $\sigma\left(\theta_{\mathrm{c}}\right)_{\text {single photon }} / \sqrt{ } \mathrm{Npe}$	Separation at $\theta_{\text {dip }}=90^{\circ}$ $\left[\theta_{\mathrm{c}}(\pi)-\theta_{\mathrm{c}}(\mathrm{K})\right] / \sigma\left(\theta_{\mathrm{c}}\right)_{\text {track }}$
308	23 mrad	$\sim 14 \mathrm{mrad}$	~ 10	~ 4.4	~ 5 sigmas

- Clearly, excellent performance, superior to the TOF method.

An example of the forward Aerogel RICH detector proposal for SuperB

S. Kononov et al., Novosibirsk, 2009

- The system would use 450 Photonis MCP-PMTs with 10 micron holes.
- 3-layer radiator for the focusing ARICH: two aerogel layers and water.
- Add glass radiator, with higher n, to improve the low momentum PID capability.
- However, adding more mass in front of the calorimeter, degrades its resolution.
- Can one handle so many MCP-PMTs operating at high gain, high rate, at 16 kG ?

Forward Aerogel RICH expected performance

S. Kononov, E. Kravchenko et al. , Novosibirsk, 2009

Particle separation:

RICH can measure momentum:

- Clearly excellent performance up to very high momenta.
- Excellent π / K separation from 0.6 to $8 \mathrm{GeV} / \mathrm{c}$.
- RICH can measure momentum to $\sim 1 \%$ for low momenta tracks.

"Ideal" SuperB PID performance

J. Va’vra, dE_dx = f(beta_gamma) study.xls spreadsheet

Example of various Super-B factory PID designs:

Calculation done for flight path length $=1.8 \mathrm{~m}$

- Calculations represent an optimistic predictions based on gaussian distributions without realistic background. Should be taken as upper limit of performance.
- A TOF detector even with ~ 100 ps resolution would do to fill up the $\mathrm{dE} / \mathrm{dx}$ hole at $\sim 1 \mathrm{GeV} / \mathrm{c}$.
- TOP counter: GaAsP photocathode is probably not realizable, so performance will be worse.

Summary of PID techniques for SuperB

Method	My personal comment
$\mathrm{dE} / \mathrm{dx}$ - charge integration	Now a standard technique; good π / K PID bellow $\sim 0.8 \mathrm{GeV} / \mathrm{c}$; no PID near cross-over near ~ 1 $\mathrm{GeV} / \mathrm{c}$; relatively poor PID performance in the relativistic rise region above $1 \mathrm{GeV} / \mathrm{c}$
dE/dx - cluster counting	Nobody has tried it yet; possible with introduction of wave form digitizing electronics; a factor of up to 2 x of improvement over the standard $\mathrm{dE} / \mathrm{dx}$ technique; should be tried.
FDIRC RICH	Thanks to focusing features, the focusing optics is much smaller than the SOB in BaBar; new MaPMTs will allow compact and highly pixelized detector, thus improving the angular resolution; absence of water will make the maintenance easier; the size and much faster timing will help the background issues; a timing resolution of $\sigma \sim 200$ ps will allow the chromatic corrections; the overall performance should be better than that of BaBar DIRC by 20-30\%?
TOP counter (latest version: pixelized)	"On-paper" performance about the same as that of FDIRC; however, the MCP-PMT detector must deliver a TTS resolution of $\sigma \sim 40$ ps for the scheme to operate; to must be also good to ~ 2 ps; possibly large rate load on pixels if backgrounds large; sensitive to chromatic effects; GaAsP photocathode probably will not be avaolable; timing MUST work !
Forward Aerogel RICH	Truly excellent PID performance for $-0.2-10 \mathrm{GeV} / \mathrm{c}$; one really does not need this much of performance; large number of MCP-PMTs operating at high gain in a high rate environment - as of now unexplored challenge; large number of pixels; mass in front of calorimeter.
Forward TOF (pixelized)	Good for π / K PID bellow $2-3 \mathrm{GeV} / \mathrm{c}$; it has a better chance to work than the DIRC-like TOF scheme; large number of MCP-PMTs required; more expensive; nobody has done it on such a large scale before; aging and rate effects reduced by running a very low gain on these tubes; to reach $\sigma \sim 25$ ps will require a large effort as everything has to be done right, including a t0 signal; to reach $\sigma \sim 50$ ps is easier, still a lot of work !!
Forward TOF (DIRC-like)	Good for π / K PID bellow $2-3 \mathrm{GeV} / \mathrm{c}$; must have tracking; very difficult data analysis; MCPPMT have to run at high gain; aging \& rate effects more difficult than in the "pixilated" TOF scheme.

Appendix

Geant 4 MC simulation for test beam condition

J.F. Benitez, I. Bedajanek, D.W.G.S. Leith, G. Mazaheri, B. Ratcliff. K. Suzuki, J. Schwiening, J. Uher and J. Va' vra, "Development of a Focusing DIRC," IEEE Nucl.Sci, Conf. Rec., October 29, 2006, and SLAC-PUB-12236, 2006 and SLAC-PUB-12803, 2007
θ_{c} resolution -6 mm pixels:

θ_{c} resolution -3 mm pixels only:

- This is why we want 3 mm pixels in FDIRC for SuperB
- Main contributions to the θ_{c} resolution:
- Chromatic smearing: ~ 2 - $\mathbf{5 . 5}$ mrad
- 6 mm pixel size: ~5-6 mrad
- 3mm pixel size: ~2.5-3 mrad

- Kaleidoscopic wiggles - could one correct them analytically ?: (contribute from ~ 0 mrad at ring center to ~ 9 mrad in outer wings of the Cherenkov ring)

How to combine FDIRC with external tracking

$$
\cos \theta_{\mathrm{c}}=\mathrm{k}_{\mathrm{x}} *{\mathrm{k} _\operatorname{track}_{\mathrm{x}}+\mathrm{k}_{\mathrm{y}} *{\mathrm{k} _\operatorname{track}_{\mathrm{y}}}+\mathrm{k}_{\mathrm{z}} *{\mathrm{k} _\operatorname{track}_{\mathrm{z}}}{ }^{2}}^{2}
$$

- One has treat signs right at the production point! For example, time-ofpropagation can be used to determine a sign of k_track $_{\mathrm{z}}$. A sign of k_{2} track k_{y} is defined by external tracking. Some ambiguities cannot be resolved, such as a sign of k_{-}track $_{x}$.

Example: FDIRC prototype in CRT

J.V., "CRT log book \#1, page 106, 2009, Run 4, position 3, >1.5 GeVmuons"

- The only way to get a good θ_{c} resolution is to combine track and FDIRC direction cosines correctly, and with right signs !

Geometry selection

DIRC-like TOF

Bad part:

a) Must be sensitive to single photoelectrons
b) Detector has to work at high gain $\left(>5 \times 10^{5}\right)$.
c) Detector operates at higher rate. Therefore, the rate and aging problems are a concern. May segment more if necessary.
e) Chromatic effects could be important for large photon paths.
f) More complicated data analysis.
g) Quartz radiator needs a complicated \& perfect photon trap. Without a photon trap it may act as a optical resonator !! Very crucial to success !!

Good part:

a) VERY small number of photo-detectors (~ 50 detectors !!)
b) Thin \& uniform radiator in front of the calorimeter

Pixilated TOF

Bad part:

a) Large number of photo-detector needed.
b) Too much mass in front of the calorimeter.
c) Low gain operation $=>$ worse S / N ratio. Offset by thick radiator.
d) Expemsive.

Good part:

a) Low gain operation $\left(\sim 2 \times 10^{4}\right)$ - small rate of aging.
b) Detector "does not" see single photoelectron background.

The detector is sensitive only to tracks. Therefore the detector operates at much lower rates. Therefore, the rate and aging problems are easier to solve.
c) Simple data analysis.
d) The chromatic effects are not important at all.

$\sigma_{\text {TTS }}$ measurement with single pe's - high gain

J.Va'vra et al., Nucl.Instr.\&Meth. A 572 (2007) 459-462, and my log books 3 \& 6, 2006 \& 2008

1) $\sim 300 \mathrm{MHz}$ BW electronics:

HPK C5594-44 amp, Phillips 715 CFD:

Ortec VT-120 amp.+6dB, Phillips 715 CFD :

- Slow down amplifiers by a long cable between Amp \& CFD (optimum was found to be $\sim 20 \mathrm{~ns}$).

2) $\sim \mathbf{1 G H z} \mathrm{BW}$ electronics:

Ortec 9327CFD, TAC566, ADC114:

12/4/09

Laser test of the Fermilab electronics - low gain

J.Va’ vra et al., Nucl.Instr.\&Meth. A 595 (2008) 270-273

Nominal MCP voltages, $\mathrm{G} \sim 2 \times 10^{4}$:

- Photonis Planacon, S/N 11180401 \& 7300714
- $10 \mu \mathrm{~m}$ MCP hole diameter
- $\quad 2.2 \mathrm{kV} \& 2.0 \mathrm{kV}$ on MCP-PMTs
- Not sensitive to single pe ! Instead, linear for Npe ~30-50

$$
\begin{aligned}
& \sigma \sim \sqrt{ }\left[\sigma^{2}{ }_{\text {MCP-PMT }}+\sigma_{\text {Laser }}^{2}+\sigma_{\text {Electronics }}^{2}+\ldots\right]= \\
& \left.=\sqrt{ }\left[\sigma_{\mathrm{TTS}} / \sqrt{ } \mathrm{N}_{\mathrm{pe}}\right)^{2}+\sqrt{ }\left((\mathrm{FWHM} / 2.35) / \sqrt{ } \mathrm{N}_{\mathrm{pe}}\right)^{2}+(4.2 \mathrm{ps})^{2}\right]
\end{aligned}
$$

- The same electronics as in the test beam - Ortec electronics (9327CFD, TAC566, ADC114)
- Extrapolating to Npe $=1$, one obtains much worse $\sigma_{\text {TTS }} \sim 110 \mathrm{ps}$.

Radiator thickness

- It appears that a length of $\mathbf{1 0} \mathbf{~ m m}$ is optimum.
- This is important from point of view of a mass in front of the EMC calorimeter.
- There is an important difference between the two beam tests:
- MCP-PMT had high gain during the Nagoya beam test, enough to detect single pe's
- MCP-PMT had low gain during the Fermilab beam test; it would not see single pe's

